Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{6c}{x\left(1-x\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&x=0\text{ and }c=0\end{matrix}\right.
Solve for c
c=-\frac{px\left(1-x\right)}{6}
x\neq 1
Solve for p
\left\{\begin{matrix}p=-\frac{6c}{x\left(1-x\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right.
Graph
Share
Copied to clipboard
6\left(x-1\right)^{-1}\times 1c=xp
Multiply both sides of the equation by 2.
6\left(x-1\right)^{-1}c=xp
Multiply 6 and 1 to get 6.
xp=6\left(x-1\right)^{-1}c
Swap sides so that all variable terms are on the left hand side.
px=6\times \frac{1}{x-1}c
Reorder the terms.
px\left(x-1\right)=6\times 1c
Multiply both sides of the equation by x-1.
px^{2}-px=6\times 1c
Use the distributive property to multiply px by x-1.
px^{2}-px=6c
Multiply 6 and 1 to get 6.
\left(x^{2}-x\right)p=6c
Combine all terms containing p.
\frac{\left(x^{2}-x\right)p}{x^{2}-x}=\frac{6c}{x^{2}-x}
Divide both sides by x^{2}-x.
p=\frac{6c}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
p=\frac{6c}{x\left(x-1\right)}
Divide 6c by x^{2}-x.
6\left(x-1\right)^{-1}\times 1c=xp
Multiply both sides of the equation by 2.
6\left(x-1\right)^{-1}c=xp
Multiply 6 and 1 to get 6.
6\times \frac{1}{x-1}c=px
Reorder the terms.
6\times 1c=px\left(x-1\right)
Multiply both sides of the equation by x-1.
6c=px\left(x-1\right)
Multiply 6 and 1 to get 6.
6c=px^{2}-px
Use the distributive property to multiply px by x-1.
\frac{6c}{6}=\frac{px\left(x-1\right)}{6}
Divide both sides by 6.
c=\frac{px\left(x-1\right)}{6}
Dividing by 6 undoes the multiplication by 6.
6\left(x-1\right)^{-1}\times 1c=xp
Multiply both sides of the equation by 2.
6\left(x-1\right)^{-1}c=xp
Multiply 6 and 1 to get 6.
xp=6\left(x-1\right)^{-1}c
Swap sides so that all variable terms are on the left hand side.
px=6\times \frac{1}{x-1}c
Reorder the terms.
px\left(x-1\right)=6\times 1c
Multiply both sides of the equation by x-1.
px^{2}-px=6\times 1c
Use the distributive property to multiply px by x-1.
px^{2}-px=6c
Multiply 6 and 1 to get 6.
\left(x^{2}-x\right)p=6c
Combine all terms containing p.
\frac{\left(x^{2}-x\right)p}{x^{2}-x}=\frac{6c}{x^{2}-x}
Divide both sides by x^{2}-x.
p=\frac{6c}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
p=\frac{6c}{x\left(x-1\right)}
Divide 6c by x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}