Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{4\left(3-y^{2}-2x\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(y=\sqrt{3}\text{ or }y=-\sqrt{3}\right)\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{4\left(3-y^{2}-2x\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }|y|=\sqrt{3}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2\left(\sqrt{ay^{2}-3a+4}+2\right)}{a}\text{; }x=\frac{2\left(-\sqrt{ay^{2}-3a+4}+2\right)}{a}\text{, }&a\neq 0\\x=\frac{3-y^{2}}{2}\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{2\left(\sqrt{ay^{2}-3a+4}+2\right)}{a}\text{; }x=\frac{2\left(-\sqrt{ay^{2}-3a+4}+2\right)}{a}\text{, }&\left(a=-\frac{4}{y^{2}-3}\text{ and }y<-\sqrt{3}\right)\text{ or }\left(|y|\leq \sqrt{3}\text{ and }a\neq 0\text{ and }a\leq -\frac{4}{y^{2}-3}\right)\text{ or }\left(a=-\frac{4}{y^{2}-3}\text{ and }|y|\neq \sqrt{3}\right)\text{ or }\left(a\neq 0\text{ and }a\geq -\frac{4}{y^{2}-3}\text{ and }|y|\geq \sqrt{3}\right)\text{ or }\left(a\neq 0\text{ and }|y|=\sqrt{3}\right)\\x=\frac{3-y^{2}}{2}\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
1ax^{2}-8x+12=4y^{2}
Add 4y^{2} to both sides. Anything plus zero gives itself.
1ax^{2}+12=4y^{2}+8x
Add 8x to both sides.
1ax^{2}=4y^{2}+8x-12
Subtract 12 from both sides.
ax^{2}=8x+4y^{2}-12
Reorder the terms.
x^{2}a=8x+4y^{2}-12
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{8x+4y^{2}-12}{x^{2}}
Divide both sides by x^{2}.
a=\frac{8x+4y^{2}-12}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=\frac{4\left(2x+y^{2}-3\right)}{x^{2}}
Divide 8x+4y^{2}-12 by x^{2}.
1ax^{2}-8x+12=4y^{2}
Add 4y^{2} to both sides. Anything plus zero gives itself.
1ax^{2}+12=4y^{2}+8x
Add 8x to both sides.
1ax^{2}=4y^{2}+8x-12
Subtract 12 from both sides.
ax^{2}=8x+4y^{2}-12
Reorder the terms.
x^{2}a=8x+4y^{2}-12
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{8x+4y^{2}-12}{x^{2}}
Divide both sides by x^{2}.
a=\frac{8x+4y^{2}-12}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=\frac{4\left(2x+y^{2}-3\right)}{x^{2}}
Divide 8x+4y^{2}-12 by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}