Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-t^{2}+t+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Square 1.
t=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Add 1 to 4.
t=\frac{-1±\sqrt{5}}{-2}
Multiply 2 times -1.
t=\frac{\sqrt{5}-1}{-2}
Now solve the equation t=\frac{-1±\sqrt{5}}{-2} when ± is plus. Add -1 to \sqrt{5}.
t=\frac{1-\sqrt{5}}{2}
Divide -1+\sqrt{5} by -2.
t=\frac{-\sqrt{5}-1}{-2}
Now solve the equation t=\frac{-1±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from -1.
t=\frac{\sqrt{5}+1}{2}
Divide -1-\sqrt{5} by -2.
-t^{2}+t+1=-\left(t-\frac{1-\sqrt{5}}{2}\right)\left(t-\frac{\sqrt{5}+1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{5}}{2} for x_{1} and \frac{1+\sqrt{5}}{2} for x_{2}.