Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(1+m^{8}\right)\left(1-m^{8}\right)
Rewrite 1-m^{16} as 1^{2}-\left(-m^{8}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{8}+1\right)\left(-m^{8}+1\right)
Reorder the terms.
\left(1+m^{4}\right)\left(1-m^{4}\right)
Consider -m^{8}+1. Rewrite -m^{8}+1 as 1^{2}-\left(-m^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{4}+1\right)\left(-m^{4}+1\right)
Reorder the terms.
\left(1+m^{2}\right)\left(1-m^{2}\right)
Consider -m^{4}+1. Rewrite -m^{4}+1 as 1^{2}-\left(-m^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{2}+1\right)\left(-m^{2}+1\right)
Reorder the terms.
\left(1-m\right)\left(1+m\right)
Consider -m^{2}+1. Rewrite -m^{2}+1 as 1^{2}-m^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m+1\right)\left(m+1\right)
Reorder the terms.
\left(-m+1\right)\left(m+1\right)\left(m^{2}+1\right)\left(m^{4}+1\right)\left(m^{8}+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: m^{2}+1,m^{4}+1,m^{8}+1.