Solve for d
d\in \mathrm{R}
Share
Copied to clipboard
6-d=-6\left(d-1\right)+5d
Add 1 and 5 to get 6.
6-d=-6d+6+5d
Use the distributive property to multiply -6 by d-1.
6-d=-d+6
Combine -6d and 5d to get -d.
6-d+d=6
Add d to both sides.
6=6
Combine -d and d to get 0.
\text{true}
Compare 6 and 6.
d\in \mathrm{R}
This is true for any d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}