Solve for x
x\geq \frac{1}{6}
Graph
Share
Copied to clipboard
1-2x+\frac{2}{3}x\leq \frac{7}{9}
Add \frac{2}{3}x to both sides.
1-\frac{4}{3}x\leq \frac{7}{9}
Combine -2x and \frac{2}{3}x to get -\frac{4}{3}x.
-\frac{4}{3}x\leq \frac{7}{9}-1
Subtract 1 from both sides.
-\frac{4}{3}x\leq \frac{7}{9}-\frac{9}{9}
Convert 1 to fraction \frac{9}{9}.
-\frac{4}{3}x\leq \frac{7-9}{9}
Since \frac{7}{9} and \frac{9}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}x\leq -\frac{2}{9}
Subtract 9 from 7 to get -2.
x\geq -\frac{2}{9}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}. Since -\frac{4}{3} is negative, the inequality direction is changed.
x\geq \frac{-2\left(-3\right)}{9\times 4}
Multiply -\frac{2}{9} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{6}{36}
Do the multiplications in the fraction \frac{-2\left(-3\right)}{9\times 4}.
x\geq \frac{1}{6}
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}