Solve for p
p=\frac{1}{\left(x-1\right)^{2}}
x\neq 1
Solve for x (complex solution)
x=p^{-\frac{1}{2}}+1
x=1-p^{-\frac{1}{2}}\text{, }p\neq 0
Solve for x
x=1+\frac{1}{\sqrt{p}}
x=1-\frac{1}{\sqrt{p}}\text{, }p>0
Graph
Share
Copied to clipboard
p-2xp+px^{2}=1
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p.
\left(1-2x+x^{2}\right)p=1
Combine all terms containing p.
\left(x^{2}-2x+1\right)p=1
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)p}{x^{2}-2x+1}=\frac{1}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
p=\frac{1}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
p=\frac{1}{\left(x-1\right)^{2}}
Divide 1 by x^{2}-2x+1.
p=\frac{1}{\left(x-1\right)^{2}}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}