Factor
\left(a-1\right)^{2}\left(a^{4}+a^{3}+a^{2}+a+1\right)^{2}
Evaluate
\left(a^{5}-1\right)^{2}
Share
Copied to clipboard
\left(a^{5}-1\right)\left(a^{5}-1\right)
Find one factor of the form a^{k}+m, where a^{k} divides the monomial with the highest power a^{10} and m divides the constant factor 1. One such factor is a^{5}-1. Factor the polynomial by dividing it by this factor.
\left(a-1\right)\left(a^{4}+a^{3}+a^{2}+a+1\right)
Consider a^{5}-1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. One such root is 1. Factor the polynomial by dividing it by a-1.
\left(a-1\right)^{2}\left(a^{4}+a^{3}+a^{2}+a+1\right)^{2}
Rewrite the complete factored expression. Polynomial a^{4}+a^{3}+a^{2}+a+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}