Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-2\left(x-3\right)\left(x-11\right)=0
Multiply -1 and 2 to get -2.
1+\left(-2x+6\right)\left(x-11\right)=0
Use the distributive property to multiply -2 by x-3.
1-2x^{2}+28x-66=0
Use the distributive property to multiply -2x+6 by x-11 and combine like terms.
-65-2x^{2}+28x=0
Subtract 66 from 1 to get -65.
-2x^{2}+28x-65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 28 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
Square 28.
x=\frac{-28±\sqrt{784+8\left(-65\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-28±\sqrt{784-520}}{2\left(-2\right)}
Multiply 8 times -65.
x=\frac{-28±\sqrt{264}}{2\left(-2\right)}
Add 784 to -520.
x=\frac{-28±2\sqrt{66}}{2\left(-2\right)}
Take the square root of 264.
x=\frac{-28±2\sqrt{66}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{66}-28}{-4}
Now solve the equation x=\frac{-28±2\sqrt{66}}{-4} when ± is plus. Add -28 to 2\sqrt{66}.
x=-\frac{\sqrt{66}}{2}+7
Divide -28+2\sqrt{66} by -4.
x=\frac{-2\sqrt{66}-28}{-4}
Now solve the equation x=\frac{-28±2\sqrt{66}}{-4} when ± is minus. Subtract 2\sqrt{66} from -28.
x=\frac{\sqrt{66}}{2}+7
Divide -28-2\sqrt{66} by -4.
x=-\frac{\sqrt{66}}{2}+7 x=\frac{\sqrt{66}}{2}+7
The equation is now solved.
1-2\left(x-3\right)\left(x-11\right)=0
Multiply -1 and 2 to get -2.
1+\left(-2x+6\right)\left(x-11\right)=0
Use the distributive property to multiply -2 by x-3.
1-2x^{2}+28x-66=0
Use the distributive property to multiply -2x+6 by x-11 and combine like terms.
-65-2x^{2}+28x=0
Subtract 66 from 1 to get -65.
-2x^{2}+28x=65
Add 65 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}+28x}{-2}=\frac{65}{-2}
Divide both sides by -2.
x^{2}+\frac{28}{-2}x=\frac{65}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-14x=\frac{65}{-2}
Divide 28 by -2.
x^{2}-14x=-\frac{65}{2}
Divide 65 by -2.
x^{2}-14x+\left(-7\right)^{2}=-\frac{65}{2}+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-\frac{65}{2}+49
Square -7.
x^{2}-14x+49=\frac{33}{2}
Add -\frac{65}{2} to 49.
\left(x-7\right)^{2}=\frac{33}{2}
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{33}{2}}
Take the square root of both sides of the equation.
x-7=\frac{\sqrt{66}}{2} x-7=-\frac{\sqrt{66}}{2}
Simplify.
x=\frac{\sqrt{66}}{2}+7 x=-\frac{\sqrt{66}}{2}+7
Add 7 to both sides of the equation.