Evaluate
x\left(1-x\right)
Expand
x-x^{2}
Graph
Share
Copied to clipboard
1-\frac{\left(\frac{x\left(1-x\right)}{1-x}-\frac{1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
1-\frac{\left(\frac{x\left(1-x\right)-1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Since \frac{x\left(1-x\right)}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
1-\frac{\left(\frac{x-x^{2}-1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Do the multiplications in x\left(1-x\right)-1.
1-\frac{\frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To raise \frac{x-x^{2}-1}{1-x} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Divide \frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}} by \frac{x^{2}-x+1}{x^{2}-2x+1} by multiplying \frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}} by the reciprocal of \frac{x^{2}-x+1}{x^{2}-2x+1}.
\frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}-\frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}.
\frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)-\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Since \frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)} and \frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x+1-2x^{3}+2x^{2}-2x+x^{4}-x^{3}+x^{2}-x^{4}+2x^{3}-x^{2}+x^{5}-2x^{4}+x^{3}+x^{3}-2x^{2}+x+x^{5}-2x^{4}+x^{3}-x^{6}+2x^{5}-x^{4}-x^{4}+2x^{3}-x^{2}+x^{3}-2x^{2}+x-x^{4}+2x^{3}-x^{2}-x^{2}+2x-1}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Do the multiplications in \left(1-x\right)^{2}\left(x^{2}-x+1\right)-\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right).
\frac{-4x^{2}+x+7x^{3}-7x^{4}+4x^{5}-x^{6}}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Combine like terms in x^{2}-x+1-2x^{3}+2x^{2}-2x+x^{4}-x^{3}+x^{2}-x^{4}+2x^{3}-x^{2}+x^{5}-2x^{4}+x^{3}+x^{3}-2x^{2}+x+x^{5}-2x^{4}+x^{3}-x^{6}+2x^{5}-x^{4}-x^{4}+2x^{3}-x^{2}+x^{3}-2x^{2}+x-x^{4}+2x^{3}-x^{2}-x^{2}+2x-1.
\frac{x\left(-x^{2}+x-1\right)\left(x-1\right)^{3}}{\left(-x+1\right)^{2}\left(x^{2}-x+1\right)}
Factor the expressions that are not already factored in \frac{-4x^{2}+x+7x^{3}-7x^{4}+4x^{5}-x^{6}}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}.
\frac{-x\left(x^{2}-x+1\right)\left(x-1\right)^{3}}{\left(-x+1\right)^{2}\left(x^{2}-x+1\right)}
Extract the negative sign in -1+x-x^{2}.
\frac{-x\left(x-1\right)^{3}}{\left(-x+1\right)^{2}}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{-x\left(x-1\right)^{3}}{x^{2}-2x+1}
Expand \left(-x+1\right)^{2}.
\frac{-x\left(x-1\right)^{3}}{\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
-x\left(x-1\right)
Cancel out \left(x-1\right)^{2} in both numerator and denominator.
-x^{2}+x
Expand the expression.
1-\frac{\left(\frac{x\left(1-x\right)}{1-x}-\frac{1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
1-\frac{\left(\frac{x\left(1-x\right)-1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Since \frac{x\left(1-x\right)}{1-x} and \frac{1}{1-x} have the same denominator, subtract them by subtracting their numerators.
1-\frac{\left(\frac{x-x^{2}-1}{1-x}\right)^{2}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
Do the multiplications in x\left(1-x\right)-1.
1-\frac{\frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}}}{\frac{x^{2}-x+1}{x^{2}-2x+1}}
To raise \frac{x-x^{2}-1}{1-x} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Divide \frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}} by \frac{x^{2}-x+1}{x^{2}-2x+1} by multiplying \frac{\left(x-x^{2}-1\right)^{2}}{\left(1-x\right)^{2}} by the reciprocal of \frac{x^{2}-x+1}{x^{2}-2x+1}.
\frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}-\frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}.
\frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)-\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Since \frac{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)} and \frac{\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right)}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x+1-2x^{3}+2x^{2}-2x+x^{4}-x^{3}+x^{2}-x^{4}+2x^{3}-x^{2}+x^{5}-2x^{4}+x^{3}+x^{3}-2x^{2}+x+x^{5}-2x^{4}+x^{3}-x^{6}+2x^{5}-x^{4}-x^{4}+2x^{3}-x^{2}+x^{3}-2x^{2}+x-x^{4}+2x^{3}-x^{2}-x^{2}+2x-1}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Do the multiplications in \left(1-x\right)^{2}\left(x^{2}-x+1\right)-\left(x-x^{2}-1\right)^{2}\left(x^{2}-2x+1\right).
\frac{-4x^{2}+x+7x^{3}-7x^{4}+4x^{5}-x^{6}}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}
Combine like terms in x^{2}-x+1-2x^{3}+2x^{2}-2x+x^{4}-x^{3}+x^{2}-x^{4}+2x^{3}-x^{2}+x^{5}-2x^{4}+x^{3}+x^{3}-2x^{2}+x+x^{5}-2x^{4}+x^{3}-x^{6}+2x^{5}-x^{4}-x^{4}+2x^{3}-x^{2}+x^{3}-2x^{2}+x-x^{4}+2x^{3}-x^{2}-x^{2}+2x-1.
\frac{x\left(-x^{2}+x-1\right)\left(x-1\right)^{3}}{\left(-x+1\right)^{2}\left(x^{2}-x+1\right)}
Factor the expressions that are not already factored in \frac{-4x^{2}+x+7x^{3}-7x^{4}+4x^{5}-x^{6}}{\left(1-x\right)^{2}\left(x^{2}-x+1\right)}.
\frac{-x\left(x^{2}-x+1\right)\left(x-1\right)^{3}}{\left(-x+1\right)^{2}\left(x^{2}-x+1\right)}
Extract the negative sign in -1+x-x^{2}.
\frac{-x\left(x-1\right)^{3}}{\left(-x+1\right)^{2}}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{-x\left(x-1\right)^{3}}{x^{2}-2x+1}
Expand \left(-x+1\right)^{2}.
\frac{-x\left(x-1\right)^{3}}{\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
-x\left(x-1\right)
Cancel out \left(x-1\right)^{2} in both numerator and denominator.
-x^{2}+x
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}