Evaluate
0
Factor
0
Graph
Share
Copied to clipboard
1-\left(x+1\right)\left(9\left(x^{2}\right)^{2}-12x^{2}x+4x^{2}-\left(3x^{2}-1\right)\left(3x^{2}+1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x^{2}-2x\right)^{2}.
1-\left(x+1\right)\left(9x^{4}-12x^{2}x+4x^{2}-\left(3x^{2}-1\right)\left(3x^{2}+1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-\left(3x^{2}-1\right)\left(3x^{2}+1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-\left(\left(3x^{2}\right)^{2}-1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
Consider \left(3x^{2}-1\right)\left(3x^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-\left(3^{2}\left(x^{2}\right)^{2}-1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
Expand \left(3x^{2}\right)^{2}.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-\left(3^{2}x^{4}-1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-\left(9x^{4}-1\right)+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
Calculate 3 to the power of 2 and get 9.
1-\left(x+1\right)\left(9x^{4}-12x^{3}+4x^{2}-9x^{4}+1+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
To find the opposite of 9x^{4}-1, find the opposite of each term.
1-\left(x+1\right)\left(-12x^{3}+4x^{2}+1+\left(2x-1\right)\left(4x^{2}+2x+1\right)\right)-\left(2x^{2}-1\right)^{2}
Combine 9x^{4} and -9x^{4} to get 0.
1-\left(x+1\right)\left(-12x^{3}+4x^{2}+1+8x^{3}-1\right)-\left(2x^{2}-1\right)^{2}
Use the distributive property to multiply 2x-1 by 4x^{2}+2x+1 and combine like terms.
1-\left(x+1\right)\left(-4x^{3}+4x^{2}+1-1\right)-\left(2x^{2}-1\right)^{2}
Combine -12x^{3} and 8x^{3} to get -4x^{3}.
1-\left(x+1\right)\left(-4x^{3}+4x^{2}\right)-\left(2x^{2}-1\right)^{2}
Subtract 1 from 1 to get 0.
1-\left(-4x^{4}+4x^{2}\right)-\left(2x^{2}-1\right)^{2}
Use the distributive property to multiply x+1 by -4x^{3}+4x^{2} and combine like terms.
1+4x^{4}-4x^{2}-\left(2x^{2}-1\right)^{2}
To find the opposite of -4x^{4}+4x^{2}, find the opposite of each term.
1+4x^{4}-4x^{2}-\left(4\left(x^{2}\right)^{2}-4x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x^{2}-1\right)^{2}.
1+4x^{4}-4x^{2}-\left(4x^{4}-4x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+4x^{4}-4x^{2}-4x^{4}+4x^{2}-1
To find the opposite of 4x^{4}-4x^{2}+1, find the opposite of each term.
1-4x^{2}+4x^{2}-1
Combine 4x^{4} and -4x^{4} to get 0.
1-1
Combine -4x^{2} and 4x^{2} to get 0.
0
Subtract 1 from 1 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}