Evaluate
\frac{\left(x-3\right)\left(x^{2}+2x+3\right)}{x^{3}-x-12}
Expand
\frac{x^{3}-x^{2}-3x-9}{x^{3}-x-12}
Graph
Share
Copied to clipboard
1-\frac{x^{2}-x-2}{x^{3}-x-12}\times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)}\times \frac{x-1}{x-2}
Factor the expressions that are not already factored in \frac{x^{2}+5x+6}{x^{2}+3x+2}.
1-\frac{x^{2}-x-2}{x^{3}-x-12}\times \frac{x+3}{x+1}\times \frac{x-1}{x-2}
Cancel out x+2 in both numerator and denominator.
1-\frac{\left(x^{2}-x-2\right)\left(x+3\right)}{\left(x^{3}-x-12\right)\left(x+1\right)}\times \frac{x-1}{x-2}
Multiply \frac{x^{2}-x-2}{x^{3}-x-12} times \frac{x+3}{x+1} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(x^{2}-x-2\right)\left(x+3\right)\left(x-1\right)}{\left(x^{3}-x-12\right)\left(x+1\right)\left(x-2\right)}
Multiply \frac{\left(x^{2}-x-2\right)\left(x+3\right)}{\left(x^{3}-x-12\right)\left(x+1\right)} times \frac{x-1}{x-2} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)}{\left(x-2\right)\left(x+1\right)\left(x^{3}-x-12\right)}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-2\right)\left(x+3\right)\left(x-1\right)}{\left(x^{3}-x-12\right)\left(x+1\right)\left(x-2\right)}.
1-\frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
Cancel out \left(x-2\right)\left(x+1\right) in both numerator and denominator.
\frac{x^{3}-x-12}{x^{3}-x-12}-\frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{3}-x-12}{x^{3}-x-12}.
\frac{x^{3}-x-12-\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
Since \frac{x^{3}-x-12}{x^{3}-x-12} and \frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-x-12-x^{2}-3x+x+3}{x^{3}-x-12}
Do the multiplications in x^{3}-x-12-\left(x-1\right)\left(x+3\right).
\frac{x^{3}-3x-9-x^{2}}{x^{3}-x-12}
Combine like terms in x^{3}-x-12-x^{2}-3x+x+3.
1-\frac{x^{2}-x-2}{x^{3}-x-12}\times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)}\times \frac{x-1}{x-2}
Factor the expressions that are not already factored in \frac{x^{2}+5x+6}{x^{2}+3x+2}.
1-\frac{x^{2}-x-2}{x^{3}-x-12}\times \frac{x+3}{x+1}\times \frac{x-1}{x-2}
Cancel out x+2 in both numerator and denominator.
1-\frac{\left(x^{2}-x-2\right)\left(x+3\right)}{\left(x^{3}-x-12\right)\left(x+1\right)}\times \frac{x-1}{x-2}
Multiply \frac{x^{2}-x-2}{x^{3}-x-12} times \frac{x+3}{x+1} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(x^{2}-x-2\right)\left(x+3\right)\left(x-1\right)}{\left(x^{3}-x-12\right)\left(x+1\right)\left(x-2\right)}
Multiply \frac{\left(x^{2}-x-2\right)\left(x+3\right)}{\left(x^{3}-x-12\right)\left(x+1\right)} times \frac{x-1}{x-2} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)}{\left(x-2\right)\left(x+1\right)\left(x^{3}-x-12\right)}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-2\right)\left(x+3\right)\left(x-1\right)}{\left(x^{3}-x-12\right)\left(x+1\right)\left(x-2\right)}.
1-\frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
Cancel out \left(x-2\right)\left(x+1\right) in both numerator and denominator.
\frac{x^{3}-x-12}{x^{3}-x-12}-\frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{3}-x-12}{x^{3}-x-12}.
\frac{x^{3}-x-12-\left(x-1\right)\left(x+3\right)}{x^{3}-x-12}
Since \frac{x^{3}-x-12}{x^{3}-x-12} and \frac{\left(x-1\right)\left(x+3\right)}{x^{3}-x-12} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-x-12-x^{2}-3x+x+3}{x^{3}-x-12}
Do the multiplications in x^{3}-x-12-\left(x-1\right)\left(x+3\right).
\frac{x^{3}-3x-9-x^{2}}{x^{3}-x-12}
Combine like terms in x^{3}-x-12-x^{2}-3x+x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}