Verify
true
Quiz
Arithmetic
5 problems similar to:
1 - ( \frac { 5 } { 9 } + \frac { 1 } { 36 } ) = \frac { 5 } { 12 }
Share
Copied to clipboard
1-\left(\frac{20}{36}+\frac{1}{36}\right)=\frac{5}{12}
Least common multiple of 9 and 36 is 36. Convert \frac{5}{9} and \frac{1}{36} to fractions with denominator 36.
1-\frac{20+1}{36}=\frac{5}{12}
Since \frac{20}{36} and \frac{1}{36} have the same denominator, add them by adding their numerators.
1-\frac{21}{36}=\frac{5}{12}
Add 20 and 1 to get 21.
1-\frac{7}{12}=\frac{5}{12}
Reduce the fraction \frac{21}{36} to lowest terms by extracting and canceling out 3.
\frac{12}{12}-\frac{7}{12}=\frac{5}{12}
Convert 1 to fraction \frac{12}{12}.
\frac{12-7}{12}=\frac{5}{12}
Since \frac{12}{12} and \frac{7}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}=\frac{5}{12}
Subtract 7 from 12 to get 5.
\text{true}
Compare \frac{5}{12} and \frac{5}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}