Evaluate
\frac{11}{3}\approx 3.666666667
Factor
\frac{11}{3} = 3\frac{2}{3} = 3.6666666666666665
Share
Copied to clipboard
1-\left(\frac{1}{3}+\frac{4}{10}-\frac{17}{5}\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
1-\left(\frac{1}{3}+\frac{2}{5}-\frac{17}{5}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
1-\left(\frac{5}{15}+\frac{6}{15}-\frac{17}{5}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{2}{5} to fractions with denominator 15.
1-\left(\frac{5+6}{15}-\frac{17}{5}\right)
Since \frac{5}{15} and \frac{6}{15} have the same denominator, add them by adding their numerators.
1-\left(\frac{11}{15}-\frac{17}{5}\right)
Add 5 and 6 to get 11.
1-\left(\frac{11}{15}-\frac{51}{15}\right)
Least common multiple of 15 and 5 is 15. Convert \frac{11}{15} and \frac{17}{5} to fractions with denominator 15.
1-\frac{11-51}{15}
Since \frac{11}{15} and \frac{51}{15} have the same denominator, subtract them by subtracting their numerators.
1-\frac{-40}{15}
Subtract 51 from 11 to get -40.
1-\left(-\frac{8}{3}\right)
Reduce the fraction \frac{-40}{15} to lowest terms by extracting and canceling out 5.
1+\frac{8}{3}
The opposite of -\frac{8}{3} is \frac{8}{3}.
\frac{3}{3}+\frac{8}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{3+8}{3}
Since \frac{3}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{11}{3}
Add 3 and 8 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}