Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{\left(14\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
To raise \frac{14\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{14^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
Expand \left(14\sqrt{3}\right)^{2}.
1-\frac{196\left(\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
Calculate 14 to the power of 2 and get 196.
1-\frac{196\times 3}{3^{2}}=7^{2}
The square of \sqrt{3} is 3.
1-\frac{588}{3^{2}}=7^{2}
Multiply 196 and 3 to get 588.
1-\frac{588}{9}=7^{2}
Calculate 3 to the power of 2 and get 9.
1-\frac{196}{3}=7^{2}
Reduce the fraction \frac{588}{9} to lowest terms by extracting and canceling out 3.
-\frac{193}{3}=7^{2}
Subtract \frac{196}{3} from 1 to get -\frac{193}{3}.
-\frac{193}{3}=49
Calculate 7 to the power of 2 and get 49.
-\frac{193}{3}=\frac{147}{3}
Convert 49 to fraction \frac{147}{3}.
\text{false}
Compare -\frac{193}{3} and \frac{147}{3}.