Verify
false
Share
Copied to clipboard
1-\frac{\left(14\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
To raise \frac{14\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{14^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
Expand \left(14\sqrt{3}\right)^{2}.
1-\frac{196\left(\sqrt{3}\right)^{2}}{3^{2}}=7^{2}
Calculate 14 to the power of 2 and get 196.
1-\frac{196\times 3}{3^{2}}=7^{2}
The square of \sqrt{3} is 3.
1-\frac{588}{3^{2}}=7^{2}
Multiply 196 and 3 to get 588.
1-\frac{588}{9}=7^{2}
Calculate 3 to the power of 2 and get 9.
1-\frac{196}{3}=7^{2}
Reduce the fraction \frac{588}{9} to lowest terms by extracting and canceling out 3.
-\frac{193}{3}=7^{2}
Subtract \frac{196}{3} from 1 to get -\frac{193}{3}.
-\frac{193}{3}=49
Calculate 7 to the power of 2 and get 49.
-\frac{193}{3}=\frac{147}{3}
Convert 49 to fraction \frac{147}{3}.
\text{false}
Compare -\frac{193}{3} and \frac{147}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}