Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{\frac{1}{a+3}+\frac{b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
Factor a^{2}-9.
1-\frac{\frac{a-3}{\left(a-3\right)\left(a+3\right)}+\frac{b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{1}{a+3} times \frac{a-3}{a-3}.
1-\frac{\frac{a-3+b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
Since \frac{a-3}{\left(a-3\right)\left(a+3\right)} and \frac{b}{\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
1-\frac{\left(a-3+b\right)\left(a^{2}-6a+9\right)}{\left(a-3\right)\left(a+3\right)\left(a+3\right)}
Divide \frac{a-3+b}{\left(a-3\right)\left(a+3\right)} by \frac{a+3}{a^{2}-6a+9} by multiplying \frac{a-3+b}{\left(a-3\right)\left(a+3\right)} by the reciprocal of \frac{a+3}{a^{2}-6a+9}.
1-\frac{\left(a+b-3\right)\left(a-3\right)^{2}}{\left(a-3\right)\left(a+3\right)^{2}}
Factor the expressions that are not already factored in \frac{\left(a-3+b\right)\left(a^{2}-6a+9\right)}{\left(a-3\right)\left(a+3\right)\left(a+3\right)}.
1-\frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
Cancel out a-3 in both numerator and denominator.
\frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}}-\frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}}.
\frac{\left(a+3\right)^{2}-\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
Since \frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}} and \frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+6a+9-a^{2}-ab+3a+3a+3b-9}{\left(a+3\right)^{2}}
Do the multiplications in \left(a+3\right)^{2}-\left(a-3\right)\left(a+b-3\right).
\frac{12a-ab+3b}{\left(a+3\right)^{2}}
Combine like terms in a^{2}+6a+9-a^{2}-ab+3a+3a+3b-9.
\frac{12a-ab+3b}{a^{2}+6a+9}
Expand \left(a+3\right)^{2}.
1-\frac{\frac{1}{a+3}+\frac{b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
Factor a^{2}-9.
1-\frac{\frac{a-3}{\left(a-3\right)\left(a+3\right)}+\frac{b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right). Multiply \frac{1}{a+3} times \frac{a-3}{a-3}.
1-\frac{\frac{a-3+b}{\left(a-3\right)\left(a+3\right)}}{\frac{a+3}{a^{2}-6a+9}}
Since \frac{a-3}{\left(a-3\right)\left(a+3\right)} and \frac{b}{\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
1-\frac{\left(a-3+b\right)\left(a^{2}-6a+9\right)}{\left(a-3\right)\left(a+3\right)\left(a+3\right)}
Divide \frac{a-3+b}{\left(a-3\right)\left(a+3\right)} by \frac{a+3}{a^{2}-6a+9} by multiplying \frac{a-3+b}{\left(a-3\right)\left(a+3\right)} by the reciprocal of \frac{a+3}{a^{2}-6a+9}.
1-\frac{\left(a+b-3\right)\left(a-3\right)^{2}}{\left(a-3\right)\left(a+3\right)^{2}}
Factor the expressions that are not already factored in \frac{\left(a-3+b\right)\left(a^{2}-6a+9\right)}{\left(a-3\right)\left(a+3\right)\left(a+3\right)}.
1-\frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
Cancel out a-3 in both numerator and denominator.
\frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}}-\frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}}.
\frac{\left(a+3\right)^{2}-\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}}
Since \frac{\left(a+3\right)^{2}}{\left(a+3\right)^{2}} and \frac{\left(a-3\right)\left(a+b-3\right)}{\left(a+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+6a+9-a^{2}-ab+3a+3a+3b-9}{\left(a+3\right)^{2}}
Do the multiplications in \left(a+3\right)^{2}-\left(a-3\right)\left(a+b-3\right).
\frac{12a-ab+3b}{\left(a+3\right)^{2}}
Combine like terms in a^{2}+6a+9-a^{2}-ab+3a+3a+3b-9.
\frac{12a-ab+3b}{a^{2}+6a+9}
Expand \left(a+3\right)^{2}.