Evaluate
-\frac{l}{15}-\frac{l}{5h}+1
Expand
-\frac{l}{15}-\frac{l}{5h}+1
Quiz
Algebra
5 problems similar to:
1 - ( \frac { 1 } { 3 } + \frac { 1 } { h } ) \times \frac { l } { 5 }
Share
Copied to clipboard
1-\left(\frac{h}{3h}+\frac{3}{3h}\right)\times \frac{l}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and h is 3h. Multiply \frac{1}{3} times \frac{h}{h}. Multiply \frac{1}{h} times \frac{3}{3}.
1-\frac{h+3}{3h}\times \frac{l}{5}
Since \frac{h}{3h} and \frac{3}{3h} have the same denominator, add them by adding their numerators.
1-\frac{\left(h+3\right)l}{3h\times 5}
Multiply \frac{h+3}{3h} times \frac{l}{5} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(h+3\right)l}{15h}
Multiply 3 and 5 to get 15.
\frac{15h}{15h}-\frac{\left(h+3\right)l}{15h}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{15h}{15h}.
\frac{15h-\left(h+3\right)l}{15h}
Since \frac{15h}{15h} and \frac{\left(h+3\right)l}{15h} have the same denominator, subtract them by subtracting their numerators.
\frac{15h-hl-3l}{15h}
Do the multiplications in 15h-\left(h+3\right)l.
1-\left(\frac{h}{3h}+\frac{3}{3h}\right)\times \frac{l}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and h is 3h. Multiply \frac{1}{3} times \frac{h}{h}. Multiply \frac{1}{h} times \frac{3}{3}.
1-\frac{h+3}{3h}\times \frac{l}{5}
Since \frac{h}{3h} and \frac{3}{3h} have the same denominator, add them by adding their numerators.
1-\frac{\left(h+3\right)l}{3h\times 5}
Multiply \frac{h+3}{3h} times \frac{l}{5} by multiplying numerator times numerator and denominator times denominator.
1-\frac{\left(h+3\right)l}{15h}
Multiply 3 and 5 to get 15.
\frac{15h}{15h}-\frac{\left(h+3\right)l}{15h}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{15h}{15h}.
\frac{15h-\left(h+3\right)l}{15h}
Since \frac{15h}{15h} and \frac{\left(h+3\right)l}{15h} have the same denominator, subtract them by subtracting their numerators.
\frac{15h-hl-3l}{15h}
Do the multiplications in 15h-\left(h+3\right)l.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}