Evaluate
\frac{28}{31}\approx 0.903225806
Factor
\frac{2 ^ {2} \cdot 7}{31} = 0.9032258064516129
Share
Copied to clipboard
1-\left(\frac{-\sqrt{3}}{\sqrt{31}}\right)^{2}
Cancel out 2 in both numerator and denominator.
1-\left(\frac{-\sqrt{3}\sqrt{31}}{\left(\sqrt{31}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{-\sqrt{3}}{\sqrt{31}} by multiplying numerator and denominator by \sqrt{31}.
1-\left(\frac{-\sqrt{3}\sqrt{31}}{31}\right)^{2}
The square of \sqrt{31} is 31.
1-\left(\frac{-\sqrt{93}}{31}\right)^{2}
To multiply \sqrt{3} and \sqrt{31}, multiply the numbers under the square root.
1-\frac{\left(-\sqrt{93}\right)^{2}}{31^{2}}
To raise \frac{-\sqrt{93}}{31} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{\left(-1\right)^{2}\left(\sqrt{93}\right)^{2}}{31^{2}}
Expand \left(-\sqrt{93}\right)^{2}.
1-\frac{1\left(\sqrt{93}\right)^{2}}{31^{2}}
Calculate -1 to the power of 2 and get 1.
1-\frac{1\times 93}{31^{2}}
The square of \sqrt{93} is 93.
1-\frac{93}{31^{2}}
Multiply 1 and 93 to get 93.
1-\frac{93}{961}
Calculate 31 to the power of 2 and get 961.
1-\frac{3}{31}
Reduce the fraction \frac{93}{961} to lowest terms by extracting and canceling out 31.
\frac{28}{31}
Subtract \frac{3}{31} from 1 to get \frac{28}{31}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}