Evaluate
-\frac{\sqrt{22470009834928621}}{149900000}+1\approx 3.673148785 \cdot 10^{-9}
Share
Copied to clipboard
1-\sqrt{1-\frac{2\times 6674\times 594}{36\times 10^{10}\times 2998}}
To multiply powers of the same base, add their exponents. Add 7 and 3 to get 10.
1-\sqrt{1-\frac{33\times 3337}{1499\times 10^{10}}}
Cancel out 2\times 2\times 2\times 9 in both numerator and denominator.
1-\sqrt{1-\frac{110121}{1499\times 10^{10}}}
Multiply 33 and 3337 to get 110121.
1-\sqrt{1-\frac{110121}{1499\times 10000000000}}
Calculate 10 to the power of 10 and get 10000000000.
1-\sqrt{1-\frac{110121}{14990000000000}}
Multiply 1499 and 10000000000 to get 14990000000000.
1-\sqrt{\frac{14990000000000}{14990000000000}-\frac{110121}{14990000000000}}
Convert 1 to fraction \frac{14990000000000}{14990000000000}.
1-\sqrt{\frac{14990000000000-110121}{14990000000000}}
Since \frac{14990000000000}{14990000000000} and \frac{110121}{14990000000000} have the same denominator, subtract them by subtracting their numerators.
1-\sqrt{\frac{14989999889879}{14990000000000}}
Subtract 110121 from 14990000000000 to get 14989999889879.
1-\frac{\sqrt{14989999889879}}{\sqrt{14990000000000}}
Rewrite the square root of the division \sqrt{\frac{14989999889879}{14990000000000}} as the division of square roots \frac{\sqrt{14989999889879}}{\sqrt{14990000000000}}.
1-\frac{\sqrt{14989999889879}}{100000\sqrt{1499}}
Factor 14990000000000=100000^{2}\times 1499. Rewrite the square root of the product \sqrt{100000^{2}\times 1499} as the product of square roots \sqrt{100000^{2}}\sqrt{1499}. Take the square root of 100000^{2}.
1-\frac{\sqrt{14989999889879}\sqrt{1499}}{100000\left(\sqrt{1499}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{14989999889879}}{100000\sqrt{1499}} by multiplying numerator and denominator by \sqrt{1499}.
1-\frac{\sqrt{14989999889879}\sqrt{1499}}{100000\times 1499}
The square of \sqrt{1499} is 1499.
1-\frac{\sqrt{22470009834928621}}{100000\times 1499}
To multiply \sqrt{14989999889879} and \sqrt{1499}, multiply the numbers under the square root.
1-\frac{\sqrt{22470009834928621}}{149900000}
Multiply 100000 and 1499 to get 149900000.
\frac{149900000}{149900000}-\frac{\sqrt{22470009834928621}}{149900000}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{149900000}{149900000}.
\frac{149900000-\sqrt{22470009834928621}}{149900000}
Since \frac{149900000}{149900000} and \frac{\sqrt{22470009834928621}}{149900000} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}