Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
1-\sqrt{\frac{1}{3}\times \frac{5}{2}-\frac{7}{18}}
Divide \frac{1}{3} by \frac{2}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{2}{5}.
1-\sqrt{\frac{1\times 5}{3\times 2}-\frac{7}{18}}
Multiply \frac{1}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
1-\sqrt{\frac{5}{6}-\frac{7}{18}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 2}.
1-\sqrt{\frac{15}{18}-\frac{7}{18}}
Least common multiple of 6 and 18 is 18. Convert \frac{5}{6} and \frac{7}{18} to fractions with denominator 18.
1-\sqrt{\frac{15-7}{18}}
Since \frac{15}{18} and \frac{7}{18} have the same denominator, subtract them by subtracting their numerators.
1-\sqrt{\frac{8}{18}}
Subtract 7 from 15 to get 8.
1-\sqrt{\frac{4}{9}}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
1-\frac{2}{3}
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{3}{3}-\frac{2}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{3-2}{3}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}
Subtract 2 from 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}