Evaluate
\left\{\begin{matrix}b\ln(|x|)-\sqrt{a}x-С+1,&b=1\\\frac{\sqrt{a}bx^{b+1}-bx^{b}-\sqrt{a}x^{b+1}+x^{b}+bx}{\left(1-b\right)x^{b}}-С,&b\neq 1\end{matrix}\right.
Differentiate w.r.t. x
\left\{\begin{matrix}-\sqrt{a}+\frac{b}{x},&b=1\\\frac{b}{x^{b}}-\sqrt{a},&b\neq 1\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}