Solve for x
x = \frac{25}{17} = 1\frac{8}{17} \approx 1.470588235
Graph
Share
Copied to clipboard
15-5\left(x-1\right)+3\left(1-3x\right)=5\left(1-2x\right)-\left(7-13x\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5,15.
15-5x+5+3\left(1-3x\right)=5\left(1-2x\right)-\left(7-13x\right)
Use the distributive property to multiply -5 by x-1.
20-5x+3\left(1-3x\right)=5\left(1-2x\right)-\left(7-13x\right)
Add 15 and 5 to get 20.
20-5x+3-9x=5\left(1-2x\right)-\left(7-13x\right)
Use the distributive property to multiply 3 by 1-3x.
23-5x-9x=5\left(1-2x\right)-\left(7-13x\right)
Add 20 and 3 to get 23.
23-14x=5\left(1-2x\right)-\left(7-13x\right)
Combine -5x and -9x to get -14x.
23-14x=5-10x-\left(7-13x\right)
Use the distributive property to multiply 5 by 1-2x.
23-14x=5-10x-7-\left(-13x\right)
To find the opposite of 7-13x, find the opposite of each term.
23-14x=5-10x-7+13x
The opposite of -13x is 13x.
23-14x=-2-10x+13x
Subtract 7 from 5 to get -2.
23-14x=-2+3x
Combine -10x and 13x to get 3x.
23-14x-3x=-2
Subtract 3x from both sides.
23-17x=-2
Combine -14x and -3x to get -17x.
-17x=-2-23
Subtract 23 from both sides.
-17x=-25
Subtract 23 from -2 to get -25.
x=\frac{-25}{-17}
Divide both sides by -17.
x=\frac{25}{17}
Fraction \frac{-25}{-17} can be simplified to \frac{25}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}