Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Since \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Do the multiplications in \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Combine like terms in x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Expand \left(x+y\right)\left(x-y\right).
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Since \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Do the multiplications in \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Combine like terms in x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Expand \left(x+y\right)\left(x-y\right).