Solve for n
n=2
Share
Copied to clipboard
4n-nn=4
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4n, the least common multiple of 4,n.
4n-n^{2}=4
Multiply n and n to get n^{2}.
4n-n^{2}-4=0
Subtract 4 from both sides.
-n^{2}+4n-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 4.
n=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
Multiply 4 times -4.
n=\frac{-4±\sqrt{0}}{2\left(-1\right)}
Add 16 to -16.
n=-\frac{4}{2\left(-1\right)}
Take the square root of 0.
n=-\frac{4}{-2}
Multiply 2 times -1.
n=2
Divide -4 by -2.
4n-nn=4
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4n, the least common multiple of 4,n.
4n-n^{2}=4
Multiply n and n to get n^{2}.
-n^{2}+4n=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-n^{2}+4n}{-1}=\frac{4}{-1}
Divide both sides by -1.
n^{2}+\frac{4}{-1}n=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}-4n=\frac{4}{-1}
Divide 4 by -1.
n^{2}-4n=-4
Divide 4 by -1.
n^{2}-4n+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-4n+4=-4+4
Square -2.
n^{2}-4n+4=0
Add -4 to 4.
\left(n-2\right)^{2}=0
Factor n^{2}-4n+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
n-2=0 n-2=0
Simplify.
n=2 n=2
Add 2 to both sides of the equation.
n=2
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}