Solve for d
d=\frac{1}{13}\approx 0.076923077
Share
Copied to clipboard
12-4\left(d+5\right)=3\times 3\left(d-1\right)
Multiply both sides of the equation by 12, the least common multiple of 3,4.
12-4d-20=3\times 3\left(d-1\right)
Use the distributive property to multiply -4 by d+5.
-8-4d=3\times 3\left(d-1\right)
Subtract 20 from 12 to get -8.
-8-4d=9\left(d-1\right)
Multiply 3 and 3 to get 9.
-8-4d=9d-9
Use the distributive property to multiply 9 by d-1.
-8-4d-9d=-9
Subtract 9d from both sides.
-8-13d=-9
Combine -4d and -9d to get -13d.
-13d=-9+8
Add 8 to both sides.
-13d=-1
Add -9 and 8 to get -1.
d=\frac{-1}{-13}
Divide both sides by -13.
d=\frac{1}{13}
Fraction \frac{-1}{-13} can be simplified to \frac{1}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}