Evaluate
\frac{a^{2}+3a-6}{a\left(a+1\right)}
Expand
\frac{a^{2}+3a-6}{a\left(a+1\right)}
Share
Copied to clipboard
\frac{a}{a}-\frac{a-3}{a}+\frac{a^{2}-9}{a^{2}+a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{a-\left(a-3\right)}{a}+\frac{a^{2}-9}{a^{2}+a}
Since \frac{a}{a} and \frac{a-3}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a+3}{a}+\frac{a^{2}-9}{a^{2}+a}
Do the multiplications in a-\left(a-3\right).
\frac{3}{a}+\frac{a^{2}-9}{a^{2}+a}
Combine like terms in a-a+3.
\frac{3}{a}+\frac{a^{2}-9}{a\left(a+1\right)}
Factor a^{2}+a.
\frac{3\left(a+1\right)}{a\left(a+1\right)}+\frac{a^{2}-9}{a\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a\left(a+1\right) is a\left(a+1\right). Multiply \frac{3}{a} times \frac{a+1}{a+1}.
\frac{3\left(a+1\right)+a^{2}-9}{a\left(a+1\right)}
Since \frac{3\left(a+1\right)}{a\left(a+1\right)} and \frac{a^{2}-9}{a\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{3a+3+a^{2}-9}{a\left(a+1\right)}
Do the multiplications in 3\left(a+1\right)+a^{2}-9.
\frac{3a-6+a^{2}}{a\left(a+1\right)}
Combine like terms in 3a+3+a^{2}-9.
\frac{3a-6+a^{2}}{a^{2}+a}
Expand a\left(a+1\right).
\frac{a}{a}-\frac{a-3}{a}+\frac{a^{2}-9}{a^{2}+a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{a-\left(a-3\right)}{a}+\frac{a^{2}-9}{a^{2}+a}
Since \frac{a}{a} and \frac{a-3}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a+3}{a}+\frac{a^{2}-9}{a^{2}+a}
Do the multiplications in a-\left(a-3\right).
\frac{3}{a}+\frac{a^{2}-9}{a^{2}+a}
Combine like terms in a-a+3.
\frac{3}{a}+\frac{a^{2}-9}{a\left(a+1\right)}
Factor a^{2}+a.
\frac{3\left(a+1\right)}{a\left(a+1\right)}+\frac{a^{2}-9}{a\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a\left(a+1\right) is a\left(a+1\right). Multiply \frac{3}{a} times \frac{a+1}{a+1}.
\frac{3\left(a+1\right)+a^{2}-9}{a\left(a+1\right)}
Since \frac{3\left(a+1\right)}{a\left(a+1\right)} and \frac{a^{2}-9}{a\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{3a+3+a^{2}-9}{a\left(a+1\right)}
Do the multiplications in 3\left(a+1\right)+a^{2}-9.
\frac{3a-6+a^{2}}{a\left(a+1\right)}
Combine like terms in 3a+3+a^{2}-9.
\frac{3a-6+a^{2}}{a^{2}+a}
Expand a\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}