Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{a}-\frac{a-3}{a}+\frac{a^{2}-9}{a^{2}+a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{a-\left(a-3\right)}{a}+\frac{a^{2}-9}{a^{2}+a}
Since \frac{a}{a} and \frac{a-3}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a+3}{a}+\frac{a^{2}-9}{a^{2}+a}
Do the multiplications in a-\left(a-3\right).
\frac{3}{a}+\frac{a^{2}-9}{a^{2}+a}
Combine like terms in a-a+3.
\frac{3}{a}+\frac{a^{2}-9}{a\left(a+1\right)}
Factor a^{2}+a.
\frac{3\left(a+1\right)}{a\left(a+1\right)}+\frac{a^{2}-9}{a\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a\left(a+1\right) is a\left(a+1\right). Multiply \frac{3}{a} times \frac{a+1}{a+1}.
\frac{3\left(a+1\right)+a^{2}-9}{a\left(a+1\right)}
Since \frac{3\left(a+1\right)}{a\left(a+1\right)} and \frac{a^{2}-9}{a\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{3a+3+a^{2}-9}{a\left(a+1\right)}
Do the multiplications in 3\left(a+1\right)+a^{2}-9.
\frac{3a-6+a^{2}}{a\left(a+1\right)}
Combine like terms in 3a+3+a^{2}-9.
\frac{3a-6+a^{2}}{a^{2}+a}
Expand a\left(a+1\right).
\frac{a}{a}-\frac{a-3}{a}+\frac{a^{2}-9}{a^{2}+a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{a-\left(a-3\right)}{a}+\frac{a^{2}-9}{a^{2}+a}
Since \frac{a}{a} and \frac{a-3}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a-a+3}{a}+\frac{a^{2}-9}{a^{2}+a}
Do the multiplications in a-\left(a-3\right).
\frac{3}{a}+\frac{a^{2}-9}{a^{2}+a}
Combine like terms in a-a+3.
\frac{3}{a}+\frac{a^{2}-9}{a\left(a+1\right)}
Factor a^{2}+a.
\frac{3\left(a+1\right)}{a\left(a+1\right)}+\frac{a^{2}-9}{a\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a\left(a+1\right) is a\left(a+1\right). Multiply \frac{3}{a} times \frac{a+1}{a+1}.
\frac{3\left(a+1\right)+a^{2}-9}{a\left(a+1\right)}
Since \frac{3\left(a+1\right)}{a\left(a+1\right)} and \frac{a^{2}-9}{a\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{3a+3+a^{2}-9}{a\left(a+1\right)}
Do the multiplications in 3\left(a+1\right)+a^{2}-9.
\frac{3a-6+a^{2}}{a\left(a+1\right)}
Combine like terms in 3a+3+a^{2}-9.
\frac{3a-6+a^{2}}{a^{2}+a}
Expand a\left(a+1\right).