Evaluate
-\frac{11}{4}=-2.75
Factor
-\frac{11}{4} = -2\frac{3}{4} = -2.75
Share
Copied to clipboard
1-\frac{8\left(-3\right)}{3\times 4}-\left(2-\left(\frac{3}{4}-1+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Multiply \frac{8}{3} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
1-\frac{-24}{12}-\left(2-\left(\frac{3}{4}-1+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Do the multiplications in the fraction \frac{8\left(-3\right)}{3\times 4}.
1-\left(-2\right)-\left(2-\left(\frac{3}{4}-1+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Divide -24 by 12 to get -2.
1+2-\left(2-\left(\frac{3}{4}-1+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
The opposite of -2 is 2.
3-\left(2-\left(\frac{3}{4}-1+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Add 1 and 2 to get 3.
3-\left(2-\left(\frac{3}{4}-\frac{4}{4}+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Convert 1 to fraction \frac{4}{4}.
3-\left(2-\left(\frac{3-4}{4}+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Since \frac{3}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
3-\left(2-\left(-\frac{1}{4}+\frac{2}{5}\left(-10+\frac{15}{4}\right)-1\right)\right)
Subtract 4 from 3 to get -1.
3-\left(2-\left(-\frac{1}{4}+\frac{2}{5}\left(-\frac{40}{4}+\frac{15}{4}\right)-1\right)\right)
Convert -10 to fraction -\frac{40}{4}.
3-\left(2-\left(-\frac{1}{4}+\frac{2}{5}\times \frac{-40+15}{4}-1\right)\right)
Since -\frac{40}{4} and \frac{15}{4} have the same denominator, add them by adding their numerators.
3-\left(2-\left(-\frac{1}{4}+\frac{2}{5}\left(-\frac{25}{4}\right)-1\right)\right)
Add -40 and 15 to get -25.
3-\left(2-\left(-\frac{1}{4}+\frac{2\left(-25\right)}{5\times 4}-1\right)\right)
Multiply \frac{2}{5} times -\frac{25}{4} by multiplying numerator times numerator and denominator times denominator.
3-\left(2-\left(-\frac{1}{4}+\frac{-50}{20}-1\right)\right)
Do the multiplications in the fraction \frac{2\left(-25\right)}{5\times 4}.
3-\left(2-\left(-\frac{1}{4}-\frac{5}{2}-1\right)\right)
Reduce the fraction \frac{-50}{20} to lowest terms by extracting and canceling out 10.
3-\left(2-\left(-\frac{1}{4}-\frac{10}{4}-1\right)\right)
Least common multiple of 4 and 2 is 4. Convert -\frac{1}{4} and \frac{5}{2} to fractions with denominator 4.
3-\left(2-\left(\frac{-1-10}{4}-1\right)\right)
Since -\frac{1}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
3-\left(2-\left(-\frac{11}{4}-1\right)\right)
Subtract 10 from -1 to get -11.
3-\left(2-\left(-\frac{11}{4}-\frac{4}{4}\right)\right)
Convert 1 to fraction \frac{4}{4}.
3-\left(2-\frac{-11-4}{4}\right)
Since -\frac{11}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
3-\left(2-\left(-\frac{15}{4}\right)\right)
Subtract 4 from -11 to get -15.
3-\left(2+\frac{15}{4}\right)
The opposite of -\frac{15}{4} is \frac{15}{4}.
3-\left(\frac{8}{4}+\frac{15}{4}\right)
Convert 2 to fraction \frac{8}{4}.
3-\frac{8+15}{4}
Since \frac{8}{4} and \frac{15}{4} have the same denominator, add them by adding their numerators.
3-\frac{23}{4}
Add 8 and 15 to get 23.
\frac{12}{4}-\frac{23}{4}
Convert 3 to fraction \frac{12}{4}.
\frac{12-23}{4}
Since \frac{12}{4} and \frac{23}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{4}
Subtract 23 from 12 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}