Solve for v
v>-\frac{3}{8}
Share
Copied to clipboard
1-\frac{7}{6}v+\frac{5}{6}v<\frac{9}{8}
Add \frac{5}{6}v to both sides.
1-\frac{1}{3}v<\frac{9}{8}
Combine -\frac{7}{6}v and \frac{5}{6}v to get -\frac{1}{3}v.
-\frac{1}{3}v<\frac{9}{8}-1
Subtract 1 from both sides.
-\frac{1}{3}v<\frac{9}{8}-\frac{8}{8}
Convert 1 to fraction \frac{8}{8}.
-\frac{1}{3}v<\frac{9-8}{8}
Since \frac{9}{8} and \frac{8}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}v<\frac{1}{8}
Subtract 8 from 9 to get 1.
v>\frac{1}{8}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}. Since -\frac{1}{3} is negative, the inequality direction is changed.
v>\frac{-3}{8}
Multiply \frac{1}{8} and -3 to get \frac{-3}{8}.
v>-\frac{3}{8}
Fraction \frac{-3}{8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}