Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+3\right)\left(2x+5\right)-\left(x+3\right)\times 5=\left(2x+5\right)\times 3
Variable x cannot be equal to any of the values -3,-\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(x+3\right)\left(2x+5\right), the least common multiple of 2x+5,x+3.
2x^{2}+11x+15-\left(x+3\right)\times 5=\left(2x+5\right)\times 3
Use the distributive property to multiply x+3 by 2x+5 and combine like terms.
2x^{2}+11x+15-\left(5x+15\right)=\left(2x+5\right)\times 3
Use the distributive property to multiply x+3 by 5.
2x^{2}+11x+15-5x-15=\left(2x+5\right)\times 3
To find the opposite of 5x+15, find the opposite of each term.
2x^{2}+6x+15-15=\left(2x+5\right)\times 3
Combine 11x and -5x to get 6x.
2x^{2}+6x=\left(2x+5\right)\times 3
Subtract 15 from 15 to get 0.
2x^{2}+6x=6x+15
Use the distributive property to multiply 2x+5 by 3.
2x^{2}+6x-6x=15
Subtract 6x from both sides.
2x^{2}=15
Combine 6x and -6x to get 0.
x^{2}=\frac{15}{2}
Divide both sides by 2.
x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{30}}{2}
Take the square root of both sides of the equation.
\left(x+3\right)\left(2x+5\right)-\left(x+3\right)\times 5=\left(2x+5\right)\times 3
Variable x cannot be equal to any of the values -3,-\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(x+3\right)\left(2x+5\right), the least common multiple of 2x+5,x+3.
2x^{2}+11x+15-\left(x+3\right)\times 5=\left(2x+5\right)\times 3
Use the distributive property to multiply x+3 by 2x+5 and combine like terms.
2x^{2}+11x+15-\left(5x+15\right)=\left(2x+5\right)\times 3
Use the distributive property to multiply x+3 by 5.
2x^{2}+11x+15-5x-15=\left(2x+5\right)\times 3
To find the opposite of 5x+15, find the opposite of each term.
2x^{2}+6x+15-15=\left(2x+5\right)\times 3
Combine 11x and -5x to get 6x.
2x^{2}+6x=\left(2x+5\right)\times 3
Subtract 15 from 15 to get 0.
2x^{2}+6x=6x+15
Use the distributive property to multiply 2x+5 by 3.
2x^{2}+6x-6x=15
Subtract 6x from both sides.
2x^{2}=15
Combine 6x and -6x to get 0.
2x^{2}-15=0
Subtract 15 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-15\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-15\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{120}}{2\times 2}
Multiply -8 times -15.
x=\frac{0±2\sqrt{30}}{2\times 2}
Take the square root of 120.
x=\frac{0±2\sqrt{30}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{30}}{2}
Now solve the equation x=\frac{0±2\sqrt{30}}{4} when ± is plus.
x=-\frac{\sqrt{30}}{2}
Now solve the equation x=\frac{0±2\sqrt{30}}{4} when ± is minus.
x=\frac{\sqrt{30}}{2} x=-\frac{\sqrt{30}}{2}
The equation is now solved.