Solve for b
b=\frac{10}{3}+\frac{2}{x}
x\neq -\frac{3}{5}\text{ and }x\neq 0
Solve for x
x=\frac{6}{3b-10}
b\neq \frac{10}{3}\text{ and }b\neq 0
Graph
Share
Copied to clipboard
4b-b\left(4-2x\right)=4\left(5x+3\right)-x\times 4b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4b, the least common multiple of 4,b.
4b-\left(4b-2bx\right)=4\left(5x+3\right)-x\times 4b
Use the distributive property to multiply b by 4-2x.
4b-4b+2bx=4\left(5x+3\right)-x\times 4b
To find the opposite of 4b-2bx, find the opposite of each term.
2bx=4\left(5x+3\right)-x\times 4b
Combine 4b and -4b to get 0.
2bx=20x+12-x\times 4b
Use the distributive property to multiply 4 by 5x+3.
2bx=20x+12-4xb
Multiply -1 and 4 to get -4.
2bx+4xb=20x+12
Add 4xb to both sides.
6bx=20x+12
Combine 2bx and 4xb to get 6bx.
6xb=20x+12
The equation is in standard form.
\frac{6xb}{6x}=\frac{20x+12}{6x}
Divide both sides by 6x.
b=\frac{20x+12}{6x}
Dividing by 6x undoes the multiplication by 6x.
b=\frac{10}{3}+\frac{2}{x}
Divide 20x+12 by 6x.
b=\frac{10}{3}+\frac{2}{x}\text{, }b\neq 0
Variable b cannot be equal to 0.
4b-b\left(4-2x\right)=4\left(5x+3\right)-x\times 4b
Multiply both sides of the equation by 4b, the least common multiple of 4,b.
4b-\left(4b-2bx\right)=4\left(5x+3\right)-x\times 4b
Use the distributive property to multiply b by 4-2x.
4b-4b+2bx=4\left(5x+3\right)-x\times 4b
To find the opposite of 4b-2bx, find the opposite of each term.
2bx=4\left(5x+3\right)-x\times 4b
Combine 4b and -4b to get 0.
2bx=20x+12-x\times 4b
Use the distributive property to multiply 4 by 5x+3.
2bx=20x+12-4xb
Multiply -1 and 4 to get -4.
2bx-20x=12-4xb
Subtract 20x from both sides.
2bx-20x+4xb=12
Add 4xb to both sides.
6bx-20x=12
Combine 2bx and 4xb to get 6bx.
\left(6b-20\right)x=12
Combine all terms containing x.
\frac{\left(6b-20\right)x}{6b-20}=\frac{12}{6b-20}
Divide both sides by 6b-20.
x=\frac{12}{6b-20}
Dividing by 6b-20 undoes the multiplication by 6b-20.
x=\frac{6}{3b-10}
Divide 12 by 6b-20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}