Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{2}-\frac{3}{2}+\frac{1-x}{\frac{4}{3}-\frac{1}{2}}=\frac{2x-1}{\frac{5}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{2-3}{2}+\frac{1-x}{\frac{4}{3}-\frac{1}{2}}=\frac{2x-1}{\frac{5}{2}}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}+\frac{1-x}{\frac{4}{3}-\frac{1}{2}}=\frac{2x-1}{\frac{5}{2}}
Subtract 3 from 2 to get -1.
-\frac{1}{2}+\frac{1-x}{\frac{8}{6}-\frac{3}{6}}=\frac{2x-1}{\frac{5}{2}}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
-\frac{1}{2}+\frac{1-x}{\frac{8-3}{6}}=\frac{2x-1}{\frac{5}{2}}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}+\frac{1-x}{\frac{5}{6}}=\frac{2x-1}{\frac{5}{2}}
Subtract 3 from 8 to get 5.
-\frac{1}{2}+\frac{1}{\frac{5}{6}}+\frac{-x}{\frac{5}{6}}=\frac{2x-1}{\frac{5}{2}}
Divide each term of 1-x by \frac{5}{6} to get \frac{1}{\frac{5}{6}}+\frac{-x}{\frac{5}{6}}.
-\frac{1}{2}+1\times \frac{6}{5}+\frac{-x}{\frac{5}{6}}=\frac{2x-1}{\frac{5}{2}}
Divide 1 by \frac{5}{6} by multiplying 1 by the reciprocal of \frac{5}{6}.
-\frac{1}{2}+\frac{6}{5}+\frac{-x}{\frac{5}{6}}=\frac{2x-1}{\frac{5}{2}}
Multiply 1 and \frac{6}{5} to get \frac{6}{5}.
-\frac{1}{2}+\frac{6}{5}-\frac{6}{5}x=\frac{2x-1}{\frac{5}{2}}
Divide -x by \frac{5}{6} to get -\frac{6}{5}x.
-\frac{5}{10}+\frac{12}{10}-\frac{6}{5}x=\frac{2x-1}{\frac{5}{2}}
Least common multiple of 2 and 5 is 10. Convert -\frac{1}{2} and \frac{6}{5} to fractions with denominator 10.
\frac{-5+12}{10}-\frac{6}{5}x=\frac{2x-1}{\frac{5}{2}}
Since -\frac{5}{10} and \frac{12}{10} have the same denominator, add them by adding their numerators.
\frac{7}{10}-\frac{6}{5}x=\frac{2x-1}{\frac{5}{2}}
Add -5 and 12 to get 7.
\frac{7}{10}-\frac{6}{5}x=\frac{2x}{\frac{5}{2}}+\frac{-1}{\frac{5}{2}}
Divide each term of 2x-1 by \frac{5}{2} to get \frac{2x}{\frac{5}{2}}+\frac{-1}{\frac{5}{2}}.
\frac{7}{10}-\frac{6}{5}x=\frac{4}{5}x+\frac{-1}{\frac{5}{2}}
Divide 2x by \frac{5}{2} to get \frac{4}{5}x.
\frac{7}{10}-\frac{6}{5}x=\frac{4}{5}x-\frac{2}{5}
Divide -1 by \frac{5}{2} by multiplying -1 by the reciprocal of \frac{5}{2}.
\frac{7}{10}-\frac{6}{5}x-\frac{4}{5}x=-\frac{2}{5}
Subtract \frac{4}{5}x from both sides.
\frac{7}{10}-2x=-\frac{2}{5}
Combine -\frac{6}{5}x and -\frac{4}{5}x to get -2x.
-2x=-\frac{2}{5}-\frac{7}{10}
Subtract \frac{7}{10} from both sides.
-2x=-\frac{4}{10}-\frac{7}{10}
Least common multiple of 5 and 10 is 10. Convert -\frac{2}{5} and \frac{7}{10} to fractions with denominator 10.
-2x=\frac{-4-7}{10}
Since -\frac{4}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
-2x=-\frac{11}{10}
Subtract 7 from -4 to get -11.
x=\frac{-\frac{11}{10}}{-2}
Divide both sides by -2.
x=\frac{-11}{10\left(-2\right)}
Express \frac{-\frac{11}{10}}{-2} as a single fraction.
x=\frac{-11}{-20}
Multiply 10 and -2 to get -20.
x=\frac{11}{20}
Fraction \frac{-11}{-20} can be simplified to \frac{11}{20} by removing the negative sign from both the numerator and the denominator.