Solve for x
x=\frac{\sqrt{34}}{2}+1\approx 3.915475947
x=-\frac{\sqrt{34}}{2}+1\approx -1.915475947
Graph
Share
Copied to clipboard
3x-\left(2x^{2}-x-15\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x-2x^{2}+x+15=0
To find the opposite of 2x^{2}-x-15, find the opposite of each term.
4x-2x^{2}+15=0
Combine 3x and x to get 4x.
-2x^{2}+4x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 15}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 15}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\times 15}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16+120}}{2\left(-2\right)}
Multiply 8 times 15.
x=\frac{-4±\sqrt{136}}{2\left(-2\right)}
Add 16 to 120.
x=\frac{-4±2\sqrt{34}}{2\left(-2\right)}
Take the square root of 136.
x=\frac{-4±2\sqrt{34}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{34}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{34}}{-4} when ± is plus. Add -4 to 2\sqrt{34}.
x=-\frac{\sqrt{34}}{2}+1
Divide -4+2\sqrt{34} by -4.
x=\frac{-2\sqrt{34}-4}{-4}
Now solve the equation x=\frac{-4±2\sqrt{34}}{-4} when ± is minus. Subtract 2\sqrt{34} from -4.
x=\frac{\sqrt{34}}{2}+1
Divide -4-2\sqrt{34} by -4.
x=-\frac{\sqrt{34}}{2}+1 x=\frac{\sqrt{34}}{2}+1
The equation is now solved.
3x-\left(2x^{2}-x-15\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x-2x^{2}+x+15=0
To find the opposite of 2x^{2}-x-15, find the opposite of each term.
4x-2x^{2}+15=0
Combine 3x and x to get 4x.
4x-2x^{2}=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+4x=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{15}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=-\frac{15}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=-\frac{15}{-2}
Divide 4 by -2.
x^{2}-2x=\frac{15}{2}
Divide -15 by -2.
x^{2}-2x+1=\frac{15}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{17}{2}
Add \frac{15}{2} to 1.
\left(x-1\right)^{2}=\frac{17}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{17}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{34}}{2} x-1=-\frac{\sqrt{34}}{2}
Simplify.
x=\frac{\sqrt{34}}{2}+1 x=-\frac{\sqrt{34}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}