Evaluate
\frac{2\left(1-d\right)}{8d^{3}+1}
Expand
-\frac{2\left(d-1\right)}{8d^{3}+1}
Share
Copied to clipboard
\frac{4d^{2}-2d+1}{4d^{2}-2d+1}-\frac{2d-1}{4d^{2}-2d+1}-\frac{2d}{2d+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{4d^{2}-2d+1}{4d^{2}-2d+1}.
\frac{4d^{2}-2d+1-\left(2d-1\right)}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Since \frac{4d^{2}-2d+1}{4d^{2}-2d+1} and \frac{2d-1}{4d^{2}-2d+1} have the same denominator, subtract them by subtracting their numerators.
\frac{4d^{2}-2d+1-2d+1}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Do the multiplications in 4d^{2}-2d+1-\left(2d-1\right).
\frac{4d^{2}-4d+2}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Combine like terms in 4d^{2}-2d+1-2d+1.
\frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}-\frac{2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4d^{2}-2d+1 and 2d+1 is \left(2d+1\right)\left(4d^{2}-2d+1\right). Multiply \frac{4d^{2}-4d+2}{4d^{2}-2d+1} times \frac{2d+1}{2d+1}. Multiply \frac{2d}{2d+1} times \frac{4d^{2}-2d+1}{4d^{2}-2d+1}.
\frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)-2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Since \frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)} and \frac{2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8d^{3}+4d^{2}-8d^{2}-4d+4d+2-8d^{3}+4d^{2}-2d}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Do the multiplications in \left(4d^{2}-4d+2\right)\left(2d+1\right)-2d\left(4d^{2}-2d+1\right).
\frac{-2d+2}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Combine like terms in 8d^{3}+4d^{2}-8d^{2}-4d+4d+2-8d^{3}+4d^{2}-2d.
\frac{-2d+2}{8d^{3}+1}
Expand \left(2d+1\right)\left(4d^{2}-2d+1\right).
\frac{4d^{2}-2d+1}{4d^{2}-2d+1}-\frac{2d-1}{4d^{2}-2d+1}-\frac{2d}{2d+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{4d^{2}-2d+1}{4d^{2}-2d+1}.
\frac{4d^{2}-2d+1-\left(2d-1\right)}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Since \frac{4d^{2}-2d+1}{4d^{2}-2d+1} and \frac{2d-1}{4d^{2}-2d+1} have the same denominator, subtract them by subtracting their numerators.
\frac{4d^{2}-2d+1-2d+1}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Do the multiplications in 4d^{2}-2d+1-\left(2d-1\right).
\frac{4d^{2}-4d+2}{4d^{2}-2d+1}-\frac{2d}{2d+1}
Combine like terms in 4d^{2}-2d+1-2d+1.
\frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}-\frac{2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4d^{2}-2d+1 and 2d+1 is \left(2d+1\right)\left(4d^{2}-2d+1\right). Multiply \frac{4d^{2}-4d+2}{4d^{2}-2d+1} times \frac{2d+1}{2d+1}. Multiply \frac{2d}{2d+1} times \frac{4d^{2}-2d+1}{4d^{2}-2d+1}.
\frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)-2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Since \frac{\left(4d^{2}-4d+2\right)\left(2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)} and \frac{2d\left(4d^{2}-2d+1\right)}{\left(2d+1\right)\left(4d^{2}-2d+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8d^{3}+4d^{2}-8d^{2}-4d+4d+2-8d^{3}+4d^{2}-2d}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Do the multiplications in \left(4d^{2}-4d+2\right)\left(2d+1\right)-2d\left(4d^{2}-2d+1\right).
\frac{-2d+2}{\left(2d+1\right)\left(4d^{2}-2d+1\right)}
Combine like terms in 8d^{3}+4d^{2}-8d^{2}-4d+4d+2-8d^{3}+4d^{2}-2d.
\frac{-2d+2}{8d^{3}+1}
Expand \left(2d+1\right)\left(4d^{2}-2d+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}