Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
40-\left(2x-5\right)=40x-4\left(4x-7\right)+8x
Multiply both sides of the equation by 40, the least common multiple of 40,10,5.
40-2x-\left(-5\right)=40x-4\left(4x-7\right)+8x
To find the opposite of 2x-5, find the opposite of each term.
40-2x+5=40x-4\left(4x-7\right)+8x
The opposite of -5 is 5.
45-2x=40x-4\left(4x-7\right)+8x
Add 40 and 5 to get 45.
45-2x=40x-16x+28+8x
Use the distributive property to multiply -4 by 4x-7.
45-2x=24x+28+8x
Combine 40x and -16x to get 24x.
45-2x=32x+28
Combine 24x and 8x to get 32x.
45-2x-32x=28
Subtract 32x from both sides.
45-34x=28
Combine -2x and -32x to get -34x.
-34x=28-45
Subtract 45 from both sides.
-34x=-17
Subtract 45 from 28 to get -17.
x=\frac{-17}{-34}
Divide both sides by -34.
x=\frac{1}{2}
Reduce the fraction \frac{-17}{-34} to lowest terms by extracting and canceling out -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}