Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(9x+1\right)^{2}-\left(9x+1\right)-1=0
Variable x cannot be equal to -\frac{1}{9} since division by zero is not defined. Multiply both sides of the equation by \left(9x+1\right)^{2}, the least common multiple of 9x+1,\left(9x+1\right)^{2}.
81x^{2}+18x+1-\left(9x+1\right)-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+1\right)^{2}.
81x^{2}+18x+1-9x-1-1=0
To find the opposite of 9x+1, find the opposite of each term.
81x^{2}+9x+1-1-1=0
Combine 18x and -9x to get 9x.
81x^{2}+9x-1=0
Subtract 1 from 1 to get 0.
x=\frac{-9±\sqrt{9^{2}-4\times 81\left(-1\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 9 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 81\left(-1\right)}}{2\times 81}
Square 9.
x=\frac{-9±\sqrt{81-324\left(-1\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{-9±\sqrt{81+324}}{2\times 81}
Multiply -324 times -1.
x=\frac{-9±\sqrt{405}}{2\times 81}
Add 81 to 324.
x=\frac{-9±9\sqrt{5}}{2\times 81}
Take the square root of 405.
x=\frac{-9±9\sqrt{5}}{162}
Multiply 2 times 81.
x=\frac{9\sqrt{5}-9}{162}
Now solve the equation x=\frac{-9±9\sqrt{5}}{162} when ± is plus. Add -9 to 9\sqrt{5}.
x=\frac{\sqrt{5}-1}{18}
Divide -9+9\sqrt{5} by 162.
x=\frac{-9\sqrt{5}-9}{162}
Now solve the equation x=\frac{-9±9\sqrt{5}}{162} when ± is minus. Subtract 9\sqrt{5} from -9.
x=\frac{-\sqrt{5}-1}{18}
Divide -9-9\sqrt{5} by 162.
x=\frac{\sqrt{5}-1}{18} x=\frac{-\sqrt{5}-1}{18}
The equation is now solved.
\left(9x+1\right)^{2}-\left(9x+1\right)-1=0
Variable x cannot be equal to -\frac{1}{9} since division by zero is not defined. Multiply both sides of the equation by \left(9x+1\right)^{2}, the least common multiple of 9x+1,\left(9x+1\right)^{2}.
81x^{2}+18x+1-\left(9x+1\right)-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+1\right)^{2}.
81x^{2}+18x+1-9x-1-1=0
To find the opposite of 9x+1, find the opposite of each term.
81x^{2}+9x+1-1-1=0
Combine 18x and -9x to get 9x.
81x^{2}+9x-1=0
Subtract 1 from 1 to get 0.
81x^{2}+9x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{81x^{2}+9x}{81}=\frac{1}{81}
Divide both sides by 81.
x^{2}+\frac{9}{81}x=\frac{1}{81}
Dividing by 81 undoes the multiplication by 81.
x^{2}+\frac{1}{9}x=\frac{1}{81}
Reduce the fraction \frac{9}{81} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{1}{9}x+\left(\frac{1}{18}\right)^{2}=\frac{1}{81}+\left(\frac{1}{18}\right)^{2}
Divide \frac{1}{9}, the coefficient of the x term, by 2 to get \frac{1}{18}. Then add the square of \frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{1}{81}+\frac{1}{324}
Square \frac{1}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{5}{324}
Add \frac{1}{81} to \frac{1}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{18}\right)^{2}=\frac{5}{324}
Factor x^{2}+\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{18}\right)^{2}}=\sqrt{\frac{5}{324}}
Take the square root of both sides of the equation.
x+\frac{1}{18}=\frac{\sqrt{5}}{18} x+\frac{1}{18}=-\frac{\sqrt{5}}{18}
Simplify.
x=\frac{\sqrt{5}-1}{18} x=\frac{-\sqrt{5}-1}{18}
Subtract \frac{1}{18} from both sides of the equation.