Solve for x
x=\frac{-\sqrt{5}-1}{18}\approx -0.179781554
x=\frac{\sqrt{5}-1}{18}\approx 0.068670443
Graph
Share
Copied to clipboard
\left(9x+1\right)^{2}-\left(9x+1\right)-1=0
Variable x cannot be equal to -\frac{1}{9} since division by zero is not defined. Multiply both sides of the equation by \left(9x+1\right)^{2}, the least common multiple of 9x+1,\left(9x+1\right)^{2}.
81x^{2}+18x+1-\left(9x+1\right)-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+1\right)^{2}.
81x^{2}+18x+1-9x-1-1=0
To find the opposite of 9x+1, find the opposite of each term.
81x^{2}+9x+1-1-1=0
Combine 18x and -9x to get 9x.
81x^{2}+9x-1=0
Subtract 1 from 1 to get 0.
x=\frac{-9±\sqrt{9^{2}-4\times 81\left(-1\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 9 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 81\left(-1\right)}}{2\times 81}
Square 9.
x=\frac{-9±\sqrt{81-324\left(-1\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{-9±\sqrt{81+324}}{2\times 81}
Multiply -324 times -1.
x=\frac{-9±\sqrt{405}}{2\times 81}
Add 81 to 324.
x=\frac{-9±9\sqrt{5}}{2\times 81}
Take the square root of 405.
x=\frac{-9±9\sqrt{5}}{162}
Multiply 2 times 81.
x=\frac{9\sqrt{5}-9}{162}
Now solve the equation x=\frac{-9±9\sqrt{5}}{162} when ± is plus. Add -9 to 9\sqrt{5}.
x=\frac{\sqrt{5}-1}{18}
Divide -9+9\sqrt{5} by 162.
x=\frac{-9\sqrt{5}-9}{162}
Now solve the equation x=\frac{-9±9\sqrt{5}}{162} when ± is minus. Subtract 9\sqrt{5} from -9.
x=\frac{-\sqrt{5}-1}{18}
Divide -9-9\sqrt{5} by 162.
x=\frac{\sqrt{5}-1}{18} x=\frac{-\sqrt{5}-1}{18}
The equation is now solved.
\left(9x+1\right)^{2}-\left(9x+1\right)-1=0
Variable x cannot be equal to -\frac{1}{9} since division by zero is not defined. Multiply both sides of the equation by \left(9x+1\right)^{2}, the least common multiple of 9x+1,\left(9x+1\right)^{2}.
81x^{2}+18x+1-\left(9x+1\right)-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+1\right)^{2}.
81x^{2}+18x+1-9x-1-1=0
To find the opposite of 9x+1, find the opposite of each term.
81x^{2}+9x+1-1-1=0
Combine 18x and -9x to get 9x.
81x^{2}+9x-1=0
Subtract 1 from 1 to get 0.
81x^{2}+9x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{81x^{2}+9x}{81}=\frac{1}{81}
Divide both sides by 81.
x^{2}+\frac{9}{81}x=\frac{1}{81}
Dividing by 81 undoes the multiplication by 81.
x^{2}+\frac{1}{9}x=\frac{1}{81}
Reduce the fraction \frac{9}{81} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{1}{9}x+\left(\frac{1}{18}\right)^{2}=\frac{1}{81}+\left(\frac{1}{18}\right)^{2}
Divide \frac{1}{9}, the coefficient of the x term, by 2 to get \frac{1}{18}. Then add the square of \frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{1}{81}+\frac{1}{324}
Square \frac{1}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{5}{324}
Add \frac{1}{81} to \frac{1}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{18}\right)^{2}=\frac{5}{324}
Factor x^{2}+\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{18}\right)^{2}}=\sqrt{\frac{5}{324}}
Take the square root of both sides of the equation.
x+\frac{1}{18}=\frac{\sqrt{5}}{18} x+\frac{1}{18}=-\frac{\sqrt{5}}{18}
Simplify.
x=\frac{\sqrt{5}-1}{18} x=\frac{-\sqrt{5}-1}{18}
Subtract \frac{1}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}