Evaluate
\frac{181}{168}\approx 1.077380952
Factor
\frac{181}{2 ^ {3} \cdot 3 \cdot 7} = 1\frac{13}{168} = 1.0773809523809523
Share
Copied to clipboard
\frac{21}{21}-\frac{1}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Convert 1 to fraction \frac{21}{21}.
\frac{21-1}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Since \frac{21}{21} and \frac{1}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Subtract 1 from 21 to get 20.
\frac{20}{21}+\frac{1}{2}\times \frac{1}{4}
Calculate 2 to the power of 2 and get 4.
\frac{20}{21}+\frac{1\times 1}{2\times 4}
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{21}+\frac{1}{8}
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{160}{168}+\frac{21}{168}
Least common multiple of 21 and 8 is 168. Convert \frac{20}{21} and \frac{1}{8} to fractions with denominator 168.
\frac{160+21}{168}
Since \frac{160}{168} and \frac{21}{168} have the same denominator, add them by adding their numerators.
\frac{181}{168}
Add 160 and 21 to get 181.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}