Solve for x
x=-14
Graph
Share
Copied to clipboard
1-\frac{1}{2}x=3-\frac{1}{3}x-\frac{1}{3}\left(-1\right)
Use the distributive property to multiply -\frac{1}{3} by x-1.
1-\frac{1}{2}x=3-\frac{1}{3}x+\frac{1}{3}
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
1-\frac{1}{2}x=\frac{9}{3}-\frac{1}{3}x+\frac{1}{3}
Convert 3 to fraction \frac{9}{3}.
1-\frac{1}{2}x=\frac{9+1}{3}-\frac{1}{3}x
Since \frac{9}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
1-\frac{1}{2}x=\frac{10}{3}-\frac{1}{3}x
Add 9 and 1 to get 10.
1-\frac{1}{2}x+\frac{1}{3}x=\frac{10}{3}
Add \frac{1}{3}x to both sides.
1-\frac{1}{6}x=\frac{10}{3}
Combine -\frac{1}{2}x and \frac{1}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x=\frac{10}{3}-1
Subtract 1 from both sides.
-\frac{1}{6}x=\frac{10}{3}-\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
-\frac{1}{6}x=\frac{10-3}{3}
Since \frac{10}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}x=\frac{7}{3}
Subtract 3 from 10 to get 7.
x=\frac{7}{3}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
x=\frac{7\left(-6\right)}{3}
Express \frac{7}{3}\left(-6\right) as a single fraction.
x=\frac{-42}{3}
Multiply 7 and -6 to get -42.
x=-14
Divide -42 by 3 to get -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}