Solve for a
a = \frac{13}{8} = 1\frac{5}{8} = 1.625
Share
Copied to clipboard
6-3\left(\frac{1}{2}-\frac{\frac{1}{2}+1}{3}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
6-3\left(\frac{1}{2}-\frac{\frac{1}{2}+\frac{2}{2}}{3}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Convert 1 to fraction \frac{2}{2}.
6-3\left(\frac{1}{2}-\frac{\frac{1+2}{2}}{3}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Since \frac{1}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
6-3\left(\frac{1}{2}-\frac{\frac{3}{2}}{3}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Add 1 and 2 to get 3.
6-3\left(\frac{1}{2}-\frac{3}{2\times 3}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Express \frac{\frac{3}{2}}{3} as a single fraction.
6-3\left(\frac{1}{2}-\frac{1}{2}\right)=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Cancel out 3 in both numerator and denominator.
6-3\times 0=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Subtract \frac{1}{2} from \frac{1}{2} to get 0.
6+0=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Multiply -3 and 0 to get 0.
6=12\times \frac{1}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Add 6 and 0 to get 6.
6=\frac{12}{2}-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Multiply 12 and \frac{1}{2} to get \frac{12}{2}.
6=6-2\left(\frac{1}{2}-4\left(a-3\times \frac{1}{2}\right)\right)
Divide 12 by 2 to get 6.
6=6-2\left(\frac{1}{2}-4\left(a-\frac{3}{2}\right)\right)
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
6=6-2\left(\frac{1}{2}-4a-4\left(-\frac{3}{2}\right)\right)
Use the distributive property to multiply -4 by a-\frac{3}{2}.
6=6-2\left(\frac{1}{2}-4a+\frac{-4\left(-3\right)}{2}\right)
Express -4\left(-\frac{3}{2}\right) as a single fraction.
6=6-2\left(\frac{1}{2}-4a+\frac{12}{2}\right)
Multiply -4 and -3 to get 12.
6=6-2\left(\frac{1}{2}-4a+6\right)
Divide 12 by 2 to get 6.
6=6-2\left(\frac{1}{2}-4a+\frac{12}{2}\right)
Convert 6 to fraction \frac{12}{2}.
6=6-2\left(\frac{1+12}{2}-4a\right)
Since \frac{1}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
6=6-2\left(\frac{13}{2}-4a\right)
Add 1 and 12 to get 13.
6=6-2\times \frac{13}{2}+8a
Use the distributive property to multiply -2 by \frac{13}{2}-4a.
6=6-13+8a
Multiply -2 times \frac{13}{2}.
6=-7+8a
Subtract 13 from 6 to get -7.
-7+8a=6
Swap sides so that all variable terms are on the left hand side.
8a=6+7
Add 7 to both sides.
8a=13
Add 6 and 7 to get 13.
a=\frac{13}{8}
Divide both sides by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}