Solve for R
\left\{\begin{matrix}R=-\frac{k\left(\beta \cos(\beta )-\sin(\beta )\right)}{h_{0}\sin(\beta )}\text{, }&h_{0}\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}\text{ and }k\neq 0\\R\in \mathrm{R}\text{, }&\beta \cos(\beta )-\sin(\beta )=0\text{ and }h_{0}=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}\text{ and }k\neq 0\end{matrix}\right.
Solve for h_0
\left\{\begin{matrix}h_{0}=-\frac{k\left(\beta \cos(\beta )-\sin(\beta )\right)}{R\sin(\beta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}\text{ and }R\neq 0\text{ and }k\neq 0\\h_{0}\in \mathrm{R}\text{, }&\beta \cos(\beta )-\sin(\beta )=0\text{ and }R=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}\text{ and }k\neq 0\end{matrix}\right.
Share
Copied to clipboard
k-\beta \cot(\beta )k=h_{0}R
Multiply both sides of the equation by k.
h_{0}R=k-\beta \cot(\beta )k
Swap sides so that all variable terms are on the left hand side.
h_{0}R=-k\beta \cot(\beta )+k
The equation is in standard form.
\frac{h_{0}R}{h_{0}}=\frac{k\left(-\beta \cos(\beta )+\sin(\beta )\right)}{\sin(\beta )h_{0}}
Divide both sides by h_{0}.
R=\frac{k\left(-\beta \cos(\beta )+\sin(\beta )\right)}{\sin(\beta )h_{0}}
Dividing by h_{0} undoes the multiplication by h_{0}.
R=\frac{k\left(-\beta \cot(\beta )+1\right)}{h_{0}}
Divide \frac{k\left(\sin(\beta )-\beta \cos(\beta )\right)}{\sin(\beta )} by h_{0}.
k-\beta \cot(\beta )k=h_{0}R
Multiply both sides of the equation by k.
h_{0}R=k-\beta \cot(\beta )k
Swap sides so that all variable terms are on the left hand side.
Rh_{0}=-k\beta \cot(\beta )+k
The equation is in standard form.
\frac{Rh_{0}}{R}=\frac{k\left(-\beta \cos(\beta )+\sin(\beta )\right)}{\sin(\beta )R}
Divide both sides by R.
h_{0}=\frac{k\left(-\beta \cos(\beta )+\sin(\beta )\right)}{\sin(\beta )R}
Dividing by R undoes the multiplication by R.
h_{0}=\frac{k\left(-\beta \cot(\beta )+1\right)}{R}
Divide \frac{k\left(\sin(\beta )-\beta \cos(\beta )\right)}{\sin(\beta )} by R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}