Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3-\left(x+2\right)+2x\left(x-1\right)-5=0
Use the distributive property to multiply 1 by x-3.
x-3-x-2+2x\left(x-1\right)-5=0
To find the opposite of x+2, find the opposite of each term.
-3-2+2x\left(x-1\right)-5=0
Combine x and -x to get 0.
-5+2x\left(x-1\right)-5=0
Subtract 2 from -3 to get -5.
-5+2x^{2}-2x-5=0
Use the distributive property to multiply 2x by x-1.
-10+2x^{2}-2x=0
Subtract 5 from -5 to get -10.
2x^{2}-2x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-10\right)}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-10\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4+80}}{2\times 2}
Multiply -8 times -10.
x=\frac{-\left(-2\right)±\sqrt{84}}{2\times 2}
Add 4 to 80.
x=\frac{-\left(-2\right)±2\sqrt{21}}{2\times 2}
Take the square root of 84.
x=\frac{2±2\sqrt{21}}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{21}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{21}+2}{4}
Now solve the equation x=\frac{2±2\sqrt{21}}{4} when ± is plus. Add 2 to 2\sqrt{21}.
x=\frac{\sqrt{21}+1}{2}
Divide 2+2\sqrt{21} by 4.
x=\frac{2-2\sqrt{21}}{4}
Now solve the equation x=\frac{2±2\sqrt{21}}{4} when ± is minus. Subtract 2\sqrt{21} from 2.
x=\frac{1-\sqrt{21}}{2}
Divide 2-2\sqrt{21} by 4.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
The equation is now solved.
x-3-\left(x+2\right)+2x\left(x-1\right)-5=0
Use the distributive property to multiply 1 by x-3.
x-3-x-2+2x\left(x-1\right)-5=0
To find the opposite of x+2, find the opposite of each term.
-3-2+2x\left(x-1\right)-5=0
Combine x and -x to get 0.
-5+2x\left(x-1\right)-5=0
Subtract 2 from -3 to get -5.
-5+2x^{2}-2x-5=0
Use the distributive property to multiply 2x by x-1.
-10+2x^{2}-2x=0
Subtract 5 from -5 to get -10.
2x^{2}-2x=10
Add 10 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-2x}{2}=\frac{10}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=\frac{10}{2}
Divide -2 by 2.
x^{2}-x=5
Divide 10 by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=5+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=5+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{21}{4}
Add 5 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{21}}{2} x-\frac{1}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
Add \frac{1}{2} to both sides of the equation.