Evaluate
\frac{\left(x-1\right)\left(4x+1\right)}{4\left(x-2\right)}
Expand
\frac{4x^{2}-3x-1}{4\left(x-2\right)}
Graph
Quiz
Polynomial
5 problems similar to:
1 ( x + 1 - \frac { 3 } { 5 - 1 } ) \cdot \frac { x - 1 } { x - 2 }
Share
Copied to clipboard
1\left(x+1-\frac{3}{4}\right)\times \frac{x-1}{x-2}
Subtract 1 from 5 to get 4.
1\left(x+\frac{4}{4}-\frac{3}{4}\right)\times \frac{x-1}{x-2}
Convert 1 to fraction \frac{4}{4}.
1\left(x+\frac{4-3}{4}\right)\times \frac{x-1}{x-2}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
1\left(x+\frac{1}{4}\right)\times \frac{x-1}{x-2}
Subtract 3 from 4 to get 1.
\frac{x-1}{x-2}\left(x+\frac{1}{4}\right)
Express 1\times \frac{x-1}{x-2} as a single fraction.
\frac{x-1}{x-2}x+\frac{x-1}{x-2}\times \frac{1}{4}
Use the distributive property to multiply \frac{x-1}{x-2} by x+\frac{1}{4}.
\frac{\left(x-1\right)x}{x-2}+\frac{x-1}{x-2}\times \frac{1}{4}
Express \frac{x-1}{x-2}x as a single fraction.
\frac{\left(x-1\right)x}{x-2}+\frac{x-1}{\left(x-2\right)\times 4}
Multiply \frac{x-1}{x-2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-1\right)x}{4\left(x-2\right)}+\frac{x-1}{4\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\times 4 is 4\left(x-2\right). Multiply \frac{\left(x-1\right)x}{x-2} times \frac{4}{4}.
\frac{4\left(x-1\right)x+x-1}{4\left(x-2\right)}
Since \frac{4\left(x-1\right)x}{4\left(x-2\right)} and \frac{x-1}{4\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4x+x-1}{4\left(x-2\right)}
Do the multiplications in 4\left(x-1\right)x+x-1.
\frac{4x^{2}-3x-1}{4\left(x-2\right)}
Combine like terms in 4x^{2}-4x+x-1.
\frac{4x^{2}-3x-1}{4x-8}
Expand 4\left(x-2\right).
1\left(x+1-\frac{3}{4}\right)\times \frac{x-1}{x-2}
Subtract 1 from 5 to get 4.
1\left(x+\frac{4}{4}-\frac{3}{4}\right)\times \frac{x-1}{x-2}
Convert 1 to fraction \frac{4}{4}.
1\left(x+\frac{4-3}{4}\right)\times \frac{x-1}{x-2}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
1\left(x+\frac{1}{4}\right)\times \frac{x-1}{x-2}
Subtract 3 from 4 to get 1.
\frac{x-1}{x-2}\left(x+\frac{1}{4}\right)
Express 1\times \frac{x-1}{x-2} as a single fraction.
\frac{x-1}{x-2}x+\frac{x-1}{x-2}\times \frac{1}{4}
Use the distributive property to multiply \frac{x-1}{x-2} by x+\frac{1}{4}.
\frac{\left(x-1\right)x}{x-2}+\frac{x-1}{x-2}\times \frac{1}{4}
Express \frac{x-1}{x-2}x as a single fraction.
\frac{\left(x-1\right)x}{x-2}+\frac{x-1}{\left(x-2\right)\times 4}
Multiply \frac{x-1}{x-2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-1\right)x}{4\left(x-2\right)}+\frac{x-1}{4\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\times 4 is 4\left(x-2\right). Multiply \frac{\left(x-1\right)x}{x-2} times \frac{4}{4}.
\frac{4\left(x-1\right)x+x-1}{4\left(x-2\right)}
Since \frac{4\left(x-1\right)x}{4\left(x-2\right)} and \frac{x-1}{4\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4x+x-1}{4\left(x-2\right)}
Do the multiplications in 4\left(x-1\right)x+x-1.
\frac{4x^{2}-3x-1}{4\left(x-2\right)}
Combine like terms in 4x^{2}-4x+x-1.
\frac{4x^{2}-3x-1}{4x-8}
Expand 4\left(x-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}