Solve for v
v=-\frac{9y}{25}+6.8
Solve for y
y=\frac{170-25v}{9}
Graph
Share
Copied to clipboard
v-7+0.39y=0.03y-0.2
Use the distributive property to multiply 1 by v-7.
v+0.39y=0.03y-0.2+7
Add 7 to both sides.
v+0.39y=0.03y+6.8
Add -0.2 and 7 to get 6.8.
v=0.03y+6.8-0.39y
Subtract 0.39y from both sides.
v=-0.36y+6.8
Combine 0.03y and -0.39y to get -0.36y.
v-7+0.39y=0.03y-0.2
Use the distributive property to multiply 1 by v-7.
v-7+0.39y-0.03y=-0.2
Subtract 0.03y from both sides.
v-7+0.36y=-0.2
Combine 0.39y and -0.03y to get 0.36y.
-7+0.36y=-0.2-v
Subtract v from both sides.
0.36y=-0.2-v+7
Add 7 to both sides.
0.36y=6.8-v
Add -0.2 and 7 to get 6.8.
\frac{0.36y}{0.36}=\frac{6.8-v}{0.36}
Divide both sides of the equation by 0.36, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{6.8-v}{0.36}
Dividing by 0.36 undoes the multiplication by 0.36.
y=\frac{170-25v}{9}
Divide 6.8-v by 0.36 by multiplying 6.8-v by the reciprocal of 0.36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}