Evaluate
\sqrt{2}\approx 1.414213562
Real Part
\sqrt{2} = 1.414213562
Share
Copied to clipboard
1|\frac{\left(3-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}|
Multiply both numerator and denominator of \frac{3-i}{1+2i} by the complex conjugate of the denominator, 1-2i.
1|\frac{\left(3-i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}}|
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1|\frac{\left(3-i\right)\left(1-2i\right)}{5}|
By definition, i^{2} is -1. Calculate the denominator.
1|\frac{3\times 1+3\times \left(-2i\right)-i-\left(-2i^{2}\right)}{5}|
Multiply complex numbers 3-i and 1-2i like you multiply binomials.
1|\frac{3\times 1+3\times \left(-2i\right)-i-\left(-2\left(-1\right)\right)}{5}|
By definition, i^{2} is -1.
1|\frac{3-6i-i-2}{5}|
Do the multiplications in 3\times 1+3\times \left(-2i\right)-i-\left(-2\left(-1\right)\right).
1|\frac{3-2+\left(-6-1\right)i}{5}|
Combine the real and imaginary parts in 3-6i-i-2.
1|\frac{1-7i}{5}|
Do the additions in 3-2+\left(-6-1\right)i.
1|\frac{1}{5}-\frac{7}{5}i|
Divide 1-7i by 5 to get \frac{1}{5}-\frac{7}{5}i.
1\sqrt{2}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{1}{5}-\frac{7}{5}i is \sqrt{2}.
\sqrt{2}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}