Solve for x
x=\frac{1}{2}=0.5
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
x^{2}-\frac{7}{6}x+\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\left(-\frac{7}{6}\right)^{2}-4\times \frac{1}{3}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{7}{6} for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{49}{36}-4\times \frac{1}{3}}}{2}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{49}{36}-\frac{4}{3}}}{2}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{1}{36}}}{2}
Add \frac{49}{36} to -\frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{7}{6}\right)±\frac{1}{6}}{2}
Take the square root of \frac{1}{36}.
x=\frac{\frac{7}{6}±\frac{1}{6}}{2}
The opposite of -\frac{7}{6} is \frac{7}{6}.
x=\frac{\frac{4}{3}}{2}
Now solve the equation x=\frac{\frac{7}{6}±\frac{1}{6}}{2} when ± is plus. Add \frac{7}{6} to \frac{1}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{3}
Divide \frac{4}{3} by 2.
x=\frac{1}{2}
Now solve the equation x=\frac{\frac{7}{6}±\frac{1}{6}}{2} when ± is minus. Subtract \frac{1}{6} from \frac{7}{6} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{3} x=\frac{1}{2}
The equation is now solved.
x^{2}-\frac{7}{6}x+\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{7}{6}x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
x^{2}-\frac{7}{6}x=-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{7}{12}\right)^{2}
Divide -\frac{7}{6}, the coefficient of the x term, by 2 to get -\frac{7}{12}. Then add the square of -\frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
Square -\frac{7}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
Add -\frac{1}{3} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{12}\right)^{2}=\frac{1}{144}
Factor x^{2}-\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
x-\frac{7}{12}=\frac{1}{12} x-\frac{7}{12}=-\frac{1}{12}
Simplify.
x=\frac{2}{3} x=\frac{1}{2}
Add \frac{7}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}