Verify
false
Share
Copied to clipboard
\frac{1}{40}+2\times \frac{3}{20}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Multiply 1 and \frac{1}{40} to get \frac{1}{40}.
\frac{1}{40}+\frac{2\times 3}{20}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Express 2\times \frac{3}{20} as a single fraction.
\frac{1}{40}+\frac{6}{20}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Multiply 2 and 3 to get 6.
\frac{1}{40}+\frac{3}{10}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{1}{40}+\frac{12}{40}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Least common multiple of 40 and 10 is 40. Convert \frac{1}{40} and \frac{3}{10} to fractions with denominator 40.
\frac{1+12}{40}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Since \frac{1}{40} and \frac{12}{40} have the same denominator, add them by adding their numerators.
\frac{13}{40}+3\times \frac{3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Add 1 and 12 to get 13.
\frac{13}{40}+\frac{3\times 3}{8}+4\times \frac{9}{20}=\frac{73}{4}
Express 3\times \frac{3}{8} as a single fraction.
\frac{13}{40}+\frac{9}{8}+4\times \frac{9}{20}=\frac{73}{4}
Multiply 3 and 3 to get 9.
\frac{13}{40}+\frac{45}{40}+4\times \frac{9}{20}=\frac{73}{4}
Least common multiple of 40 and 8 is 40. Convert \frac{13}{40} and \frac{9}{8} to fractions with denominator 40.
\frac{13+45}{40}+4\times \frac{9}{20}=\frac{73}{4}
Since \frac{13}{40} and \frac{45}{40} have the same denominator, add them by adding their numerators.
\frac{58}{40}+4\times \frac{9}{20}=\frac{73}{4}
Add 13 and 45 to get 58.
\frac{29}{20}+4\times \frac{9}{20}=\frac{73}{4}
Reduce the fraction \frac{58}{40} to lowest terms by extracting and canceling out 2.
\frac{29}{20}+\frac{4\times 9}{20}=\frac{73}{4}
Express 4\times \frac{9}{20} as a single fraction.
\frac{29}{20}+\frac{36}{20}=\frac{73}{4}
Multiply 4 and 9 to get 36.
\frac{29+36}{20}=\frac{73}{4}
Since \frac{29}{20} and \frac{36}{20} have the same denominator, add them by adding their numerators.
\frac{65}{20}=\frac{73}{4}
Add 29 and 36 to get 65.
\frac{13}{4}=\frac{73}{4}
Reduce the fraction \frac{65}{20} to lowest terms by extracting and canceling out 5.
\text{false}
Compare \frac{13}{4} and \frac{73}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}