Solve for x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
1\left(\frac{10}{75}+\frac{1}{5}\right)+\frac{1}{5}x=1
Expand \frac{1}{7.5} by multiplying both numerator and the denominator by 10.
1\left(\frac{2}{15}+\frac{1}{5}\right)+\frac{1}{5}x=1
Reduce the fraction \frac{10}{75} to lowest terms by extracting and canceling out 5.
1\left(\frac{2}{15}+\frac{3}{15}\right)+\frac{1}{5}x=1
Least common multiple of 15 and 5 is 15. Convert \frac{2}{15} and \frac{1}{5} to fractions with denominator 15.
1\times \frac{2+3}{15}+\frac{1}{5}x=1
Since \frac{2}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
1\times \frac{5}{15}+\frac{1}{5}x=1
Add 2 and 3 to get 5.
1\times \frac{1}{3}+\frac{1}{5}x=1
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{3}+\frac{1}{5}x=1
Multiply 1 and \frac{1}{3} to get \frac{1}{3}.
\frac{1}{5}x=1-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{1}{5}x=\frac{3}{3}-\frac{1}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{1}{5}x=\frac{3-1}{3}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}x=\frac{2}{3}
Subtract 1 from 3 to get 2.
x=\frac{2}{3}\times 5
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
x=\frac{2\times 5}{3}
Express \frac{2}{3}\times 5 as a single fraction.
x=\frac{10}{3}
Multiply 2 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}