Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+7}=5-\sqrt{3x-2}
Subtract \sqrt{3x-2} from both sides of the equation.
\sqrt{x+7}=-\sqrt{3x-2}+5
Reorder the terms.
\left(\sqrt{x+7}\right)^{2}=\left(-\sqrt{3x-2}+5\right)^{2}
Square both sides of the equation.
x+7=\left(-\sqrt{3x-2}+5\right)^{2}
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+7=\left(\sqrt{3x-2}\right)^{2}-10\sqrt{3x-2}+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\sqrt{3x-2}+5\right)^{2}.
x+7=3x-2-10\sqrt{3x-2}+25
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
x+7=3x+23-10\sqrt{3x-2}
Add -2 and 25 to get 23.
x+7-\left(3x+23\right)=-10\sqrt{3x-2}
Subtract 3x+23 from both sides of the equation.
x+7-3x-23=-10\sqrt{3x-2}
To find the opposite of 3x+23, find the opposite of each term.
-2x+7-23=-10\sqrt{3x-2}
Combine x and -3x to get -2x.
-2x-16=-10\sqrt{3x-2}
Subtract 23 from 7 to get -16.
\left(-2x-16\right)^{2}=\left(-10\sqrt{3x-2}\right)^{2}
Square both sides of the equation.
4x^{2}+64x+256=\left(-10\sqrt{3x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-16\right)^{2}.
4x^{2}+64x+256=\left(-10\right)^{2}\left(\sqrt{3x-2}\right)^{2}
Expand \left(-10\sqrt{3x-2}\right)^{2}.
4x^{2}+64x+256=100\left(\sqrt{3x-2}\right)^{2}
Calculate -10 to the power of 2 and get 100.
4x^{2}+64x+256=100\left(3x-2\right)
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
4x^{2}+64x+256=300x-200
Use the distributive property to multiply 100 by 3x-2.
4x^{2}+64x+256-300x=-200
Subtract 300x from both sides.
4x^{2}-236x+256=-200
Combine 64x and -300x to get -236x.
4x^{2}-236x+256+200=0
Add 200 to both sides.
4x^{2}-236x+456=0
Add 256 and 200 to get 456.
x=\frac{-\left(-236\right)±\sqrt{\left(-236\right)^{2}-4\times 4\times 456}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -236 for b, and 456 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-236\right)±\sqrt{55696-4\times 4\times 456}}{2\times 4}
Square -236.
x=\frac{-\left(-236\right)±\sqrt{55696-16\times 456}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-236\right)±\sqrt{55696-7296}}{2\times 4}
Multiply -16 times 456.
x=\frac{-\left(-236\right)±\sqrt{48400}}{2\times 4}
Add 55696 to -7296.
x=\frac{-\left(-236\right)±220}{2\times 4}
Take the square root of 48400.
x=\frac{236±220}{2\times 4}
The opposite of -236 is 236.
x=\frac{236±220}{8}
Multiply 2 times 4.
x=\frac{456}{8}
Now solve the equation x=\frac{236±220}{8} when ± is plus. Add 236 to 220.
x=57
Divide 456 by 8.
x=\frac{16}{8}
Now solve the equation x=\frac{236±220}{8} when ± is minus. Subtract 220 from 236.
x=2
Divide 16 by 8.
x=57 x=2
The equation is now solved.
1\sqrt{57+7}+\sqrt{3\times 57-2}=5
Substitute 57 for x in the equation 1\sqrt{x+7}+\sqrt{3x-2}=5.
21=5
Simplify. The value x=57 does not satisfy the equation.
1\sqrt{2+7}+\sqrt{3\times 2-2}=5
Substitute 2 for x in the equation 1\sqrt{x+7}+\sqrt{3x-2}=5.
5=5
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+7}=-\sqrt{3x-2}+5 has a unique solution.