Evaluate
2\sqrt{6}+6-\sqrt{10}-\sqrt{15}\approx 3.863718479
Share
Copied to clipboard
\left(2\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}\right)
Use the distributive property to multiply 1 by 2\sqrt{3}-\sqrt{5}.
2\sqrt{3}\sqrt{2}+2\left(\sqrt{3}\right)^{2}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{5} by each term of \sqrt{2}+\sqrt{3}.
2\sqrt{6}+2\left(\sqrt{3}\right)^{2}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{6}+2\times 3-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
The square of \sqrt{3} is 3.
2\sqrt{6}+6-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
Multiply 2 and 3 to get 6.
2\sqrt{6}+6-\sqrt{10}-\sqrt{5}\sqrt{3}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{6}+6-\sqrt{10}-\sqrt{15}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}