Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}\right)
Use the distributive property to multiply 1 by 2\sqrt{3}-\sqrt{5}.
2\sqrt{3}\sqrt{2}+2\left(\sqrt{3}\right)^{2}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{5} by each term of \sqrt{2}+\sqrt{3}.
2\sqrt{6}+2\left(\sqrt{3}\right)^{2}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{6}+2\times 3-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
The square of \sqrt{3} is 3.
2\sqrt{6}+6-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}
Multiply 2 and 3 to get 6.
2\sqrt{6}+6-\sqrt{10}-\sqrt{5}\sqrt{3}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{6}+6-\sqrt{10}-\sqrt{15}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.