Evaluate
\frac{121}{90}\approx 1.344444444
Factor
\frac{11 ^ {2}}{2 \cdot 3 ^ {2} \cdot 5} = 1\frac{31}{90} = 1.3444444444444446
Share
Copied to clipboard
\frac{5+3}{5}-\frac{\frac{2}{3}}{\frac{12}{13}}+\frac{7}{5}\times \frac{1}{3}
Multiply 1 and 5 to get 5.
\frac{8}{5}-\frac{\frac{2}{3}}{\frac{12}{13}}+\frac{7}{5}\times \frac{1}{3}
Add 5 and 3 to get 8.
\frac{8}{5}-\frac{2}{3}\times \frac{13}{12}+\frac{7}{5}\times \frac{1}{3}
Divide \frac{2}{3} by \frac{12}{13} by multiplying \frac{2}{3} by the reciprocal of \frac{12}{13}.
\frac{8}{5}-\frac{2\times 13}{3\times 12}+\frac{7}{5}\times \frac{1}{3}
Multiply \frac{2}{3} times \frac{13}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{5}-\frac{26}{36}+\frac{7}{5}\times \frac{1}{3}
Do the multiplications in the fraction \frac{2\times 13}{3\times 12}.
\frac{8}{5}-\frac{13}{18}+\frac{7}{5}\times \frac{1}{3}
Reduce the fraction \frac{26}{36} to lowest terms by extracting and canceling out 2.
\frac{144}{90}-\frac{65}{90}+\frac{7}{5}\times \frac{1}{3}
Least common multiple of 5 and 18 is 90. Convert \frac{8}{5} and \frac{13}{18} to fractions with denominator 90.
\frac{144-65}{90}+\frac{7}{5}\times \frac{1}{3}
Since \frac{144}{90} and \frac{65}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{79}{90}+\frac{7}{5}\times \frac{1}{3}
Subtract 65 from 144 to get 79.
\frac{79}{90}+\frac{7\times 1}{5\times 3}
Multiply \frac{7}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{79}{90}+\frac{7}{15}
Do the multiplications in the fraction \frac{7\times 1}{5\times 3}.
\frac{79}{90}+\frac{42}{90}
Least common multiple of 90 and 15 is 90. Convert \frac{79}{90} and \frac{7}{15} to fractions with denominator 90.
\frac{79+42}{90}
Since \frac{79}{90} and \frac{42}{90} have the same denominator, add them by adding their numerators.
\frac{121}{90}
Add 79 and 42 to get 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}