Evaluate
\frac{173}{78}\approx 2.217948718
Factor
\frac{173}{2 \cdot 3 \cdot 13} = 2\frac{17}{78} = 2.217948717948718
Share
Copied to clipboard
\frac{2+1}{2}+\frac{\frac{2\times 3+1}{3}}{\frac{3\times 4+1}{4}}
Multiply 1 and 2 to get 2.
\frac{3}{2}+\frac{\frac{2\times 3+1}{3}}{\frac{3\times 4+1}{4}}
Add 2 and 1 to get 3.
\frac{3}{2}+\frac{\left(2\times 3+1\right)\times 4}{3\left(3\times 4+1\right)}
Divide \frac{2\times 3+1}{3} by \frac{3\times 4+1}{4} by multiplying \frac{2\times 3+1}{3} by the reciprocal of \frac{3\times 4+1}{4}.
\frac{3}{2}+\frac{\left(6+1\right)\times 4}{3\left(3\times 4+1\right)}
Multiply 2 and 3 to get 6.
\frac{3}{2}+\frac{7\times 4}{3\left(3\times 4+1\right)}
Add 6 and 1 to get 7.
\frac{3}{2}+\frac{28}{3\left(3\times 4+1\right)}
Multiply 7 and 4 to get 28.
\frac{3}{2}+\frac{28}{3\left(12+1\right)}
Multiply 3 and 4 to get 12.
\frac{3}{2}+\frac{28}{3\times 13}
Add 12 and 1 to get 13.
\frac{3}{2}+\frac{28}{39}
Multiply 3 and 13 to get 39.
\frac{117}{78}+\frac{56}{78}
Least common multiple of 2 and 39 is 78. Convert \frac{3}{2} and \frac{28}{39} to fractions with denominator 78.
\frac{117+56}{78}
Since \frac{117}{78} and \frac{56}{78} have the same denominator, add them by adding their numerators.
\frac{173}{78}
Add 117 and 56 to get 173.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}